GUT inspired SO(5) x U(1) x SU(3) gauge-Higgs unification

Speaker: Shuichiro Funatsu (Central China Normal University)

Yutaka Hosotani (Osaka University), Hisaki Hatanaka (Osaka), Yuta Orikasa (Czech Technical University), Naoki Yamatsu (Hokkaido University)

arXiv:1902.01603

gauge-Higgs unification

\[A_M = (A_\mu, A_y) \]

4D gauge field

Higgs field

The Higgs boson is protected by the gauge symmetry

- massless at the tree level
- massive at the loop level

\[e^{i\theta_R} = \text{exp} \left(i g \int \text{d}y \langle A_y \rangle \right) \]

Higgs VEV appears as a Wilson-line phase

Matter fields

gauge-Higgs Grand unification

In the bulk

\[\Psi_{32} = \left(\begin{array}{c} \Psi_{16} \\ \Psi_{16}' \end{array} \right) \]

\[\Psi_{16} = \left(\begin{array}{cccc} \nu & \nu_L & \nu_R & e_L \\ e & e_e & e_e' & e_L \\ \bar{e} & \bar{e}_L & \bar{e}_L & \bar{e}_L \\ d_j & d_j & d_j & d_j \\ d_j & d_j & d_j & d_j \end{array} \right) \]

\[\Psi_{11} = \left(\begin{array}{cccc} \bar{N} & E \Psi_{16} \end{array} \right) \]

\[\Psi_{32}' = \Psi_F \]

On the UV brane

\[\Phi_{32} = \text{scalar} \]

\[\chi = \left(\begin{array}{c} \eta \end{array} \right) \]

Majorana fermion

quark & lepton masses

<table>
<thead>
<tr>
<th>Particle</th>
<th>Mass (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>u, u'</td>
<td>m_u</td>
</tr>
<tr>
<td>c, c'</td>
<td>m_c</td>
</tr>
<tr>
<td>d, d', D^{\pm}</td>
<td>m_d</td>
</tr>
<tr>
<td>ν, ν', η</td>
<td>m_ν</td>
</tr>
</tbody>
</table>

brane masses are necessary to obtain mass difference between u-quark and d-quark and the small deviation of the W-coupling

Future work

- Calculation of the effective potential
- $m_d > m_u$ is not realised yet
- Flavor physics
- Neutrino physics
- Dark matter constraints
- KK bottom search

References

Furui, Hosotani and Yamatsu, 6 papers

SO(5) branching rules

(ν, ν)	1.996×10^{-3}	6.5×10^{-3}	6.8×10^{-3}	8.38×10^{-3}
(ν, ν)	1×10^{-3}	2.1×10^{-3}	8.38×10^{-3}	
(ν, ν)	-1.096×10^{-3}	1.5×10^{-3}	-1.838×10^{-3}	
(ν, ν)	0.839×10^{-3}	0.5×10^{-3}	4.7×10^{-3}	
(ν, ν)	-0.839×10^{-3}	1.2×10^{-3}	7.74×10^{-3}	
(ν, ν)	0.703×10^{-3}	3.9×10^{-3}	24×10^{-3}	
(ν, ν)	-0.703×10^{-3}	8.8×10^{-3}	-6×10^{-3}	