GUT inspired SO(5)×U(1)×SU(3) gauge-Higgs unification

Speaker: Shuichiro Funatsu (Central China Normal University)

Yutaka Hosotani (Osaka University), Hisaki Hatanaka (Osaka), Yuta Orikasa (Czech Technical University), Naoki Yamatsu (Hokkaido University)

arXiv:1902.01603

gauge-Higgs unification $A_M = (A_\mu, A_y)$ Higgs field 4D gauge field The Higgs boson is protected by the gauge symmetry \rightarrow massless at the tree level massive at the loop level $e^{i\theta_H} \equiv \exp\left(ig \int dy \langle A_y \rangle\right)$

gauge-Higgs Grand unification $SO(11) \xrightarrow{B.C.} SO(4) \times SO(6)_C$ $\simeq SU(2)_L \times SU(2)_R \times SU(4)_C$

 $\xrightarrow{\text{brane int.}} SU(2)_L \times U(1)_Y \times SU(3)_C$ $\xrightarrow{}_{\text{Higgs VEV}} U(1)_{\text{EM}} \times SU(3)_C$

Hosotani and Yamatsu, PTEP 111B01 (2015), 093B01 (2016), 091B01 (2017), 023B05 (2018) Furui, Hosotani and Yamatsu, PTEP 093B01 (2016)

gauge-Higgs EW unification

 $SO(5) \times U(1)_X \times SU(3)_C$

 $\xrightarrow{B.C.}$ $SO(4) \times U(1)_X \times SU(3)_C$

 $\simeq SU(2)_L \times SU(2)_R \times U(1)_X \times SU(3)_C$

 $\xrightarrow{\text{brane int.}} SU(2)_L \times U(1)_Y \times SU(3)_C$

```
\xrightarrow{}_{\text{Higgs VEV}} U(1)_{\text{EM}} \times SU(3)_C
```

Defined on the 5D warped metric

Hosotani, Oda, Ohnuma and Sakamura, Phys. Rev. D78, 096002 (2008) Yoon and Peskin, Phys. Rev. D96, 115030 (2017)

SF, Hatanaka, Hosotani and Orikasa, 6 papers

left-handed bottom : b, D, X

brane masses are necessary to obtain

mass difference between u-quark and d-quark and the small deviation of the W-coupling

Leptons	c_L	M	$rac{g_L^W}{g_w/\sqrt{2}}-1$	$rac{g_R^W}{g_w/\sqrt{2}}$	
(u_e, e)	1.086	$1{ m TeV}$	-2.64×10^{-3}	$O(10^{-11})$	
	-1.086	$1{ m TeV}$	-5.24×10^{-3}	$O(10^{-23})$	
(u_{μ},μ)	0.839	$1\mathrm{TeV}$	-2.64×10^{-3}	$O(10^{-14})$	
	-0.839	$1{ m TeV}$	-5.25×10^{-3}	$O(10^{-21})$	
$(u_{ au}, au)$	0.703	$1{ m TeV}$	-2.64×10^{-3}	$O(10^{-15})$	
	-0.703	$1{ m TeV}$	-5.25×10^{-3}	$O(10^{-19})$	

$ ilde{m}_D \equiv m_D/k$								
Quarks	c_Q	μ_1	$ ilde{m}_D$	$\left rac{g_L^W}{g_w/\sqrt{2}} - 1 ight $	$rac{g_R^W}{g_w/\sqrt{2}}$			
(u,d)	-1.044	0.1	1.0	-5.24×10^{-3}	$O(10^{-14})$			
(c,s)	-0.7546	0.1	1.0	-5.25×10^{-3}	$O(10^{-9})$			
(t,b)	0.2287	0.1	0.1	-3.43×10^{-3}	$O(10^{-4})$			
	-0.2287	0.1	1.0	-4.41×10^{-3}	$O(10^{-5})$			

		-	-			
Quarks	c_Q	μ_1	c_D	\tilde{m}_D	$m_{d^{(1)}}$	$m_{u^{(1)}}$
					(TeV)	(TeV)
(u,d)	-1.044	0.01	0.6194	1.0	4.59	8.23
		0.1	0.4612	1.0	4.80	
(c,s)	-0.7546	0.1	0.6808	1.0	5.40	7.16
		10.	0.0949	1.0	5.22	
(t,b)	+0.2287	0.1	0.5838	0.1	2.84	7.20
		10.	0.3791	0.1	2.84	
	-0.2287	0.1	1.044	1.0	5.06	
		10.	0.8352	1.0	5.06	

• Neutrino physics

- Dark matter constraints
- KK bottom search

Leptons	c_L	M	m_B	$m_{{m u}_s}$	$m_{ u^{(1)}}$	$m_{e^{(1)}}$
		(GeV)	(GeV)		(TeV)	(TeV)
(u_e,e)	1.086	$1. \times 10^{3}$	$6.6 imes10^{19}$	$6.8\mathrm{MeV}$	8.38	8.38
		1.	$2.1 imes 10^{18}$	$6.8\mathrm{MeV}$	8.38	8.38
	-1.086	$1. \times 10^{3}$	$1.5 imes 10^4$	_	8.38	8.38
		1.	4.7×10^2	_	0.51	8.38
(u_{μ},μ)	0.839	$1. \times 10^{3}$	$5.0 imes 10^{19}$	$1.4{ m GeV}$	7.47	7.47
	-0.839	$1. \times 10^{3}$	1.2×10^7	_	7.47	7.47
$(u_{ au}, au)$	0.703	$1. \times 10^{3}$	$3.9 imes10^{19}$	$24.\mathrm{GeV}$	6.96	6.96
	-0.703	$1. \times 10^{3}$	8.8×10^{8}	_	6.96	6.96