HPNP2019 The 4th International Workshop on "Higgs as a Probe of New Physics"

18.-22. February 2019, Osaka University, Japan

Reconstructing Higgs masses in 2HDMX for muon g-2

Eung Jin Chun

Outline

• 2HDMX for muon g-2

A. Broggio, M. Passera, K.M. Patel, S.K. Vempati, 1409.3199

- Constraints from lepton universality J. Kim, 1605.06298
- Reconstructing extra Higgs bosons S. Dwivedi, T. Mondal, B. Mukhopadhyaya, 1707.07928 +S. K. Rai, 1807.0379
- Higgs-portal dark matter

P. Bandyopadhyay, R. Mandal, 1709.08581

Two-Higgs-Doublet-Model (2HDM)

• 8(+2) parameters in the scalar potential;

$$V_{2\text{HDM}} = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - \left[m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \right] + \frac{1}{2} \lambda_{1} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{1}{2} \lambda_{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} \\ + \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right) + \lambda_{4} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \left(\Phi_{2}^{\dagger} \Phi_{1} \right) + \left\{ \frac{1}{2} \lambda_{5} \left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left[\lambda_{6} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \right. \\ + \lambda_{7} \left(\Phi_{2}^{\dagger} \Phi_{2} \right) \right] \left(\Phi_{1}^{\dagger} \Phi_{2} \right) + \text{h.c.} \right\}. \qquad Z_{2} \text{ symmetry: } \Phi_{1,2} \rightarrow \mp \Phi_{1,2} \\ \Phi_{1,2} = \left(\phi_{1,2}^{+}, \frac{1}{\sqrt{2}} \left[v_{1,2} + \rho_{1,2} + i \eta_{1,2} \right] \right) \\ \text{masses+2 angles+1 VEV: } h(125), H, A, H^{\pm}; \beta, \alpha; v = \sqrt{v_{1}^{2} + v_{2}^{2}};$$

$$G^{0} = \eta_{1}c_{\beta} + \eta_{2}s_{\beta} \qquad h = \rho_{1}c_{\alpha} - \rho_{2}s_{\alpha} \quad \tan\beta = \frac{v_{2}}{v_{1}}$$
$$A = \eta_{1}s_{\beta} - \eta_{2}c_{\beta} \qquad H = \rho_{1}s_{\alpha} + \rho_{2}c_{\alpha}$$

• 4

Flavor problem

• Generic Yukawa couplings leads to FCNC:

$$\mathcal{L}_{Y} = y_{ij}^{u1,2} \widetilde{\Phi}_{1,2} q_{i} u_{j}^{c} + y_{ij}^{d1,2} \Phi_{1,2} q_{i} d_{j}^{c} + y_{ij}^{e1,2} \Phi_{1,2} l_{i} e_{j}^{c} + h.c.$$

$$\rightarrow \underbrace{(y_{ij}^{f1} c_{\beta} + y_{ij}^{f2} s_{\beta})}_{m_{ij}^{f}} \underbrace{\overset{v}{\sqrt{2}} f_{i} f_{j}^{c}}_{VS} VS. \underbrace{(y_{ij}^{f1} c_{\alpha} - y_{ij}^{f2} s_{\alpha})}_{y_{ij}^{f}} hf_{i} f_{j}^{c} + ...$$

$$= \widetilde{m}_{i}^{f} \tilde{f}_{i} \tilde{f}_{i}^{c} + \widetilde{y}_{ij}^{f} h \tilde{f}_{i} \tilde{f}_{j}^{c} + ...$$

Models with natural flavor conservation

• To avoid dangerous flavor-changing processes,

Impose Z_2 to couple only one Higgs to each Yukawa type (d, e)

 $\Phi_2(+), \Phi_1(-); t_R(+), d_R(\pm), e_R(\pm)$

$$-\mathcal{L}_{Y} = y_{ij}^{u} \widetilde{\Phi}_{2} q_{i} u_{j}^{c} + y_{ij}^{d} \Phi_{1,2} q_{i} d_{j}^{c} + y_{ij}^{e} \Phi_{1,2} l_{i} e_{j}^{c} + h.c.$$

Model	u_R^i	d_R^i	e_R^i
Type I	Φ_2	Φ_2	Φ_2
Type II	Φ_2	Φ_1	Φ_1
Lepton-specific	Φ_2	Φ_2	Φ_1
Flipped	Φ_2	Φ_1	Φ_2

Yukawa couplings

	y_u^A	y_d^A	y_l^A	y_u^H	y_d^H	y_l^H	y^h_u	y_d^h	y_l^h
Type I	\coteta	$-\cot\beta$	$-\cot\beta$	$rac{\sin lpha}{\sin eta}$	$rac{\sin lpha}{\sin eta}$	$rac{\sin lpha}{\sin eta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$rac{\cos lpha}{\sin eta}$
Type II	\coteta	aneta	aneta	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$-\frac{\sin\alpha}{\cos\beta}$
Type X	\coteta	$-\cot\beta$	aneta	$rac{\sin lpha}{\sin eta}$	$rac{\sin lpha}{\sin eta}$	$rac{\cos lpha}{\cos eta}$	$rac{\cos lpha}{\sin eta}$	$rac{\cos lpha}{\sin eta}$	$-\frac{\sin \alpha}{\cos \beta}$
Type Y	\coteta	aneta	$-\cot\beta$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$

$$-\mathcal{L}_{\text{Yukawa}}^{\text{2HDMs}} = \sum_{f=u,d,l} \frac{m_f}{v} \underbrace{\begin{pmatrix} y_f^h h\bar{f}f + y_f^H H\bar{f}f - iy_f^A A\bar{f}\gamma_5 f \end{pmatrix}}_{\text{125 GeV}} \\ + \left[\sqrt{2}V_{ud}H^+ \bar{u} \left(\frac{m_u}{v} y_u^A P_L + \frac{m_d}{v} y_d^A P_R \right) d + \sqrt{2} \frac{m_l}{v} y_l^A H^+ \bar{\nu} P_R l + h.c. \right]$$

Gauge couplings

ATLAS 1509.00672

SM limit

$$\sin(\beta - \alpha) \approx 1$$
, $|y_f^h| \approx 1$, $|y^{A,H}| \approx \frac{1}{t_\beta}$, t_β

	y_u^A	y_d^A	y_l^A	y_u^H	y_d^H	y_l^H	y_u^h	y_d^h	y_l^h
Type I	$\cot \beta$	$-\cot\beta$	$-\cot\beta$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$
Type II	$\cot \beta$	aneta	$\tan\beta$	$\approx \frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin\alpha}{\cos\beta}$	$-\frac{\sin\alpha}{\cos\beta}$
Type X	$\cot \beta$	$-\cot\beta$	aneta	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$
Type Y	$\cot \beta$	aneta	$-\cot\beta$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$
				· · · · ·		,	, , , , , , , , , , , , , , , , , , ,		,
		m						±1	

$$-\mathcal{L}_{\text{Yukawa}}^{\text{2HDMs}} = \sum_{f=u,d,l} \frac{m_f}{v} \underbrace{\begin{pmatrix} y_f^h h\bar{f}f + y_f^H H\bar{f}f - iy_f^A A\bar{f}\gamma_5 f \end{pmatrix}}_{125 \text{ GeV}} \\ + \left[\sqrt{2}V_{ud}H^+ \bar{u} \left(\frac{m_u}{v} y_u^A P_L + \frac{m_d}{v} y_d^A P_R \right) d + \sqrt{2} \frac{m_l}{v} y_l^A H^+ \bar{\nu} P_R l + h.c. \right]$$

EJChun@KIAS

Muon g-2 anomaly

1701.02807 Magnetic moment: $\frac{e}{-}$ \vec{s} VALUE ($\times 10^{-11}$) UNITS $\vec{\mu} = g_{\mu} \, \overline{2m_{\mu}}$ DHMZ QED 116584718.95 ± 0.08 180.2±4.9 HVP 6850.6 ± 43 2011 HLMNT HLbL 105 ± 26 $a_{\mu} = \frac{g_{\mu} - 2}{2}$ 182.8±5.0 153.6 ± 1.0 EW Total SM $116\,591\,828\pm49$ SMXX 2020 181.5±3.5 BNL-E821 04 ave. 2001 WSSER 208.9±6.3 Fermilab E989 m m New (g-2) exp. 2020 mh m μ XXX±1.6 u QED electroweak LO hadronic hadronic LbL 150 160 170 180 190 200 210 220 230 140 a..-11 659 000 (10⁻¹⁰)

Muon g-2 at 1-loop – excluded

• A light *H* and/or large $y_{\mu}^{H} \approx t_{\beta}$:

Muon g-2 at 2-loop – viable

• A light A and large $y_{\mu,\tau}^A \approx t_\beta$:

• Type X at large t_{β} , being leptophilic, strongly limited by precision data for lepton universality.

Lepton universality in Z decays

- Precision EW measurements on Z poles determine
- One-loop corrections mediated by extra Higgs bosons can be sizable for large tanβ.

 $\begin{aligned} \frac{\Gamma_{Z \to \mu^+ \mu^-}}{\Gamma_{Z \to e^+ e^-}} &= 1.0009 \pm 0.0028 \,, \\ \frac{\Gamma_{Z \to \tau^+ \tau^-}}{\Gamma_{Z \to e^+ e^-}} &= 1.0019 \pm 0.0032 \,, \end{aligned}$

LEP EWWG, 0509008

with correlation +0.63

L2HDM corrections

• Large corrections to $Z \rightarrow \tau \tau$ at large tan β :

$$-\mathcal{L} = \frac{g}{c_W} Z^{\mu} \left\{ \bar{f} \gamma_{\mu} (g_L P_L + g_R P_R) f + i(-\frac{1}{2} + s_W^2) H^+ \overleftrightarrow{\partial_{\mu}} H^- + A \overleftrightarrow{\partial_{\mu}} H \right\}$$

• Deviation from lepton universality:

$$\delta_{ll} = (\Gamma_{Z \to l^+ l^-} / \Gamma_{Z \to e^+ e^-}) - 1$$

$$\begin{split} \delta_{\mu\mu} &\simeq 0 \,, \\ \delta_{\tau\tau} &= \frac{2g_L^e \operatorname{Re}(\delta g_L^{2\mathrm{HDM}}) + 2g_R^e \operatorname{Re}(\delta g_R^{2\mathrm{HDM}})}{g_L^{e\,2} + g_R^{e\,2}} \,, \end{split}$$

Hollik, Kuehn, 1991

$$\begin{split} \delta g_L^{\text{2HDM}} &= \frac{1}{16\pi^2} \frac{m_f^2}{v^2} t_\beta^2 \left\{ -\frac{1}{2} B_Z(r_A) - \frac{1}{2} B_Z(r_H) - 2 C_Z(r_A, r_H) \right. \\ &\quad + s_W^2 \left[B_Z(r_A) + B_Z(r_H) + \tilde{C}_Z(r_A) + \tilde{C}_Z(r_H) \right] \right\}, \\ \delta g_R^{\text{2HDM}} &= \frac{1}{16\pi^2} \frac{m_f^2}{v^2} t_\beta^2 \left\{ 2 C_Z(r_A, r_H) - 2 C_Z(r_{H^\pm}, r_{H^\pm}) + \tilde{C}_Z(r_{H^\pm}) - \frac{1}{2} \tilde{C}_Z(r_A) - \frac{1}{2} \tilde{C}_Z(r_H) \right. \\ &\quad + s_W^2 \left[B_Z(r_A) + B_Z(r_H) + 2 B_Z(r_{H^\pm}) + \tilde{C}_Z(r_A) + \tilde{C}_Z(r_H) + 4 C_Z(r_{H^\pm}, r_{H^\pm}) \right] \right\} \\ r_\phi &= \frac{m_\phi^2/m_Z^2}{v^2} \text{ with } \phi = A, H, H^\pm \\ B_Z(r) &= -\frac{\Delta_\epsilon}{2} - \frac{1}{4} + \frac{1}{2} \log(r), \\ C_Z(r_1, r_2) &= \frac{\Delta_\epsilon}{4} - \frac{1}{2} \int_0^1 dx \int_0^x dy \log[r_2(1-x) + (r_1-1)y + xy], \\ \tilde{C}_Z(r) &= \frac{\Delta_\epsilon}{2} + \frac{1}{2} - r[1 + \log(r)] + r^2 [\log(r) \log(1 + r^{-1}) - \operatorname{dilog}(-r^{-1})] \\ &\quad - \frac{i\pi}{2} \left[1 - 2r + 2r^2 \log(1 + r^{-1}) \right]. \end{split}$$

Larger correction for larger hierarchy: $m_A \ll m_H \approx m_{H^\pm}$ and $m_\phi \gg m_Z$

Lepton Universality & τ decay

• From pure leptonic processes:

 $\frac{\tau \to e\nu\nu}{\mu \to e\nu\nu}, \frac{\tau \to \mu\nu\nu}{\mu \to e\nu\nu}, \frac{\tau \to \mu\nu\nu}{\tau \to e\nu\nu}$

• From semi-hadronic processes: $\frac{(\tau \to \nu \pi/K)}{(\pi/K \to \mu \nu)}$

• Correlation matrix:

 $\left(\frac{g_{\tau}}{g_{\mu}}\right) = 1.0011 \pm 0.0015$ $\left(g_{\tau}\right) = 1.0020 \pm 0.0015$

$$\left(\frac{g_e}{g_e}\right) = 1.0029 \pm 0.0015$$
$$\left(\frac{g_\mu}{g_e}\right) = 1.0018 \pm 0.0014$$

Note) Only two ratios are independent: The redundant direction should be projected out.

HFAG, 1412.7515

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)_{\pi} = 0.9963 \pm 0.0027$$
$$\left(\frac{g_{\tau}}{g_{\mu}}\right)_{K} = 0.9858 \pm 0.0071$$

$$\begin{pmatrix} 1 & +0.53 & -0.49 & +0.24 & +0.12 \\ +0.53 & 1 & +0.48 & +0.26 & +0.10 \\ -0.49 & +0.48 & 1 & +0.02 & -0.02 \\ +0.24 & +0.26 & +0.02 & 1 & +0.05 \\ +0.12 & +0.10 & -0.02 & +0.05 & 1 \end{pmatrix}$$

HPNP 2019-02-21

L2HDM corrections

- Tree-level contribution from H^{\pm} :
- One-loop corrections mediated by A, H, H^{\pm} :

 $\delta_{tree} = \frac{m_{\tau}^2 m_l^2}{8 \, m_{H^+}^4} t_{\beta}^4 - \frac{m_l^2}{m_{H^+}^2} t_{\beta}^2 \, \kappa(m_l^2/m_{\tau}^2)$

Krawczyk, Temes, 0410248

$$\delta_{loop} = \frac{m_{\tau}^2 t_{\beta}^2}{16\pi^2 v^2} \left(1 + \frac{1}{4} \left[H\left(\frac{m_A}{m_{H^{\pm}}}\right) + s_{\beta-\alpha}^2 H\left(\frac{m_H}{m_{H^{\pm}}}\right) + c_{\beta-\alpha}^2 H\left(\frac{m_h}{m_{H^{\pm}}}\right) \right] \right)$$

$$\begin{array}{c} & \left(\frac{g_{\tau}}{g_{\mu}}\right) = 1 + \delta_{\mathrm{loop}}, \quad \left(\frac{g_{\tau}}{g_{e}}\right) = 1 + \delta_{\mathrm{tree}} + \delta_{\mathrm{loop}}, \quad \left(\frac{g_{\mu}}{g_{e}}\right) = 1 + \delta_{\mathrm{tree}}, \\ & \left(\frac{g_{\tau}}{g_{\mu}}\right)_{\pi} = 1 + \delta_{\mathrm{loop}}, \quad \left(\frac{g_{\tau}}{g_{\mu}}\right)_{K} = 1 + \delta_{\mathrm{loop}}. \end{array}$$

EJChun@KIAS

Results

1 and 2σ regions for constraints from the muon g-2, Z and tau decays.

Poor $\chi^2_{min} \sim 12$ for tau decay; SM about 2σ away

Allowed region larger than in the previous studies: 1504.07059, 1507.08067.

EJChun@KIAS

LHC tests

- Discover a light pseudo-scalar with large tanbeta: $B(A \rightarrow \tau \tau) \simeq 100\%$
- Electroweak production of $H^{\pm}A \& HA$ leading to $3\&4\tau$
- Electroweak production of $H^{\pm}A \otimes HA \rightarrow W(Z)AA \rightarrow 2\mu 2\tau$

Mass reconstruction

• Exotic Higgs decay: $h \rightarrow AA \rightarrow 2\tau 2\mu$

LHC search for $h \rightarrow AA \rightarrow \mu\mu\tau\tau$

Assume: $B(h \rightarrow AA) = 15\%$ $\sigma(h \rightarrow AA) \approx 7.5 \ pb; \ \sigma(h \rightarrow AA \rightarrow \mu\mu\tau\tau) \approx 52 \ fb$

 $m_A = 50 (60) \text{ GeV}; \tan\beta = 60; \cos(\beta - \alpha) = 0.03; \lambda_{hAA} = 0.02 (0.03)$

Event selection

 $m_A = 50 \; (60) \; {
m GeV}$

 $\mathcal{L} = 3/ab$

	Cuts	Signal	$pp \rightarrow \mu^+ \mu^-$	$pp \rightarrow VV$	$pp \to t\bar{t}$			
,			+jets	+jets	+jets			
	$p_T(j_ au) > 20 { m GeV}$							
b)GeV	Preselection	858 (1480)	41041 (41041)	$107890 \ (107890)$	14486(14486)			
	$ M_{\mu\mu} - M_A < 7.5 \text{ GeV}$	836(1430)	909(779)	1189(1325)	1637 (1697)			
	$M_{j_\tau j_\tau} > M_A - 20 \ \&$	760(1336)	130 (390)	307~(654)	330(419)			
	$M_{j_{\tau}j_{\tau}} < M_A + 10 \text{ GeV}$							
	$M_{2\mu 2 j_{\tau}} > M_h - 20 \ \&$	698(1283)	$< 130 \ (< 390)*$	81 (109)	65~(51)			
	$M_{2\mu 2j\tau} < M_h + 10 ~{\rm GeV}$							
		p_T	$(j_{ au}) > 25~{ m GeV}$					
	Preselection	277 (493)	28833 (28833)	75209(75209)	11629 (11629)			
	$ M_{\mu\mu} - M_A < 7.5 { m ~GeV}$	269(475)	649(390)	794(924)	$1324\ (1396)$			
	$ M(j_\tau j_\tau) - M_A < 15 \text{ GeV}$	228(420)	$< 649 \ (130)$	112 (416)	182 (196)			
	$ M_{2\mu 2j_\tau} - M_h < 15 {\rm GeV}$	211 (410)	$< 649 \; (< 130) *$	20(15)	27 (27)			

$\mu^{+}\mu^{-} j_{\tau} j_{\tau}$ $p_{T}(\mu) > 10 \text{ GeV}$ $p_{T}(j_{\tau}) > 20 (25) \text{GeV}$ $|\eta| < 2.5$

LHC prospect

CMS result

Reconstruction of heavy Higgses

- Signal: $pp \rightarrow H^{\pm}A/HA \rightarrow W^{\pm}/Z A(\mu\mu)A(\tau\tau)$
- Background: $pp \rightarrow \mu\mu, tt, VV + jets$

Event selection

$$M_{H^{\pm},H} = 210 \text{ GeV}, M_A = 50 \text{ GeV}, \qquad \mathcal{L} = 3/ab$$

Cuts	Signal		Backgro	Significance	
Outs	$H^{\pm}A$	HA	$\mu^+\mu^-$ +jets	$t\bar{t}$ +jets	
$\mu^{+}\mu^{-}$, $p_{T}(\mu) > 10 \text{ GeV}$	179	79	38610	25424	1.0
0 <i>b</i>	173	72	37755	10125	1.1
$ M_{\mu\mu} - M_A < 2.5 \text{ GeV}$	151	63	9228	2444	2.0
$p_T(\mu\mu) > 90 \text{ GeV}$	108	44	2351	605	2.8
$\Delta \Phi(\mu\mu, j_{\tau}) > 1.6$	98	40	1742	354	3.0

 $M_{\mu\mu jj}$

Scalar DM through Higgs Portal

 Introduce a stable singlet scalar in SM – the minimal (simplest-minded) model:

Silveira, Zee, 85 McDonalds 94 Bird, et.al., 06 and many

 $V = \mu_H^2 |H|^2 + \lambda_H |H|^4 + \lambda_{HS} |H|^2 |S|^2 + \mu_S^2 |S|^2 + \lambda_S |S|^4$

- Right relic density through freeze-out controlled by the DM annihilation rate of $S \ S \rightarrow h \ h, S \ S \rightarrow h^* \rightarrow \bar{f} \ f$ for an appropriate range of $\lambda_{HS} \ \& \ m_S$.
- Strongly disfavored by direct detection experiments.
- Different features in 2HDM+SDM

Constrained Higgs-portal SDM

L2HDM+Scalar DM

P. Bandyopadhyay, EJC, R. Mandal, 1709.08581

$$V = \frac{1}{2}m_0^2 S^2 + \frac{\lambda_S}{4}S^4 + \frac{1}{2}S^2 [\kappa_1|\Phi_1|^2 + \kappa_2|\Phi_2|^2] \qquad \begin{array}{c} \Phi_1 \sim A, H, H^{\pm} \\ \hline \Phi_2 \sim h \end{array}$$

$$V = \frac{1}{2}S^2 [2v(\kappa_h h + \kappa_H H) \\ + \kappa_{hh}h^2 + 2\kappa_{hH}hH + \kappa_{HH}H^2 + \kappa_{AA}(A^2 + 2H^+H^-)]$$
where $\kappa_h = -\kappa_1 s_\alpha c_\beta + \kappa_2 c_\alpha s_\beta \approx \kappa_1 c_\beta^2 + \kappa_2 s_\beta^2,$

$$\kappa_H = +\kappa_1 c_\alpha c_\beta + \kappa_2 s_\alpha s_\beta \approx (\kappa_1 - \kappa_2) c_\beta s_\beta,$$

$$\kappa_{hH} = \kappa_1 s_\alpha^2 + \kappa_2 c_\alpha^2 \approx \kappa_1 c_\beta^2 + \kappa_2 s_\beta^2,$$

$$\kappa_{hH} = -(\kappa_1 - \kappa_2) c_\alpha s_\alpha \approx (\kappa_1 - \kappa_2) c_\beta s_\beta,$$

$$\kappa_{HH} = \kappa_1 c_\alpha^2 + \kappa_2 s_\alpha^2 \approx \kappa_1 s_\beta^2 + \kappa_2 c_\beta^2,$$

$$\kappa_{AA} = \kappa_1 s_\beta^2 + \kappa_2 c_\beta^2$$

DM-Nucleon scattering

 $\tan\beta = 50, m_A = 50 GeV, m_{H,H^{\pm}} = 250 GeV,$

DM annihilation to 4τ

Conclusion

- X2HDM with large $tan\beta$ and light A is a viable option for the muon g-2.
- Lepton universality tests in Z and tau decays strongly limit the parameter space $(m_A, \tan\beta)$.
- No region is allowed at 1σ , but large region opens up at 2σ , particularly, for $m_H \approx m_{H^{\pm}} = 200 400 \text{ GeV}$.
- Higgs boson masses could be reconstructed at LHC through $h \rightarrow AA^{(*)} \rightarrow 4\tau (2\mu 2\tau); \quad H^{0,\pm} A \rightarrow AA \rightarrow 4\tau (2\mu 2\tau).$
- Higgs-portal Scalar DM can be realized successfully.