R-symmetry for Higgs alignment

Karim BrNakII
 (CNRS - Sorbonne Université, Paris)

Based on:
I. Antoniadis - K.B. - A. Delgado - M. Quiròs '06
K. B. - M.D. Goodsell - S. Williamson '18
K. B. - Y. Chen - G. Lafforgue - Marmet '18

HPNP 2019, Osaka

SORBONNE
UNIVERSITÉ
createurs de futurs

A New Hope

Super brane-worlds for $2 H D M$

SUSY braneworlds \longrightarrow Boundaries 4D N=1 SUSY + Bulk 5D N=2 SUSY

- $\mathrm{N}=2$ in the bulk: Nonchiral states (gauge \&e Higgs sectors)
- $N=1$ on the boundaries: Chiral matter (leptons \& quarks)

Making the World Double Supersymmetric

\Rightarrow The two MSSM Higgs doublets become an $N=2$ supersymmetry hypermultiplet.
\Rightarrow Two chiral supermultiplets S and T, adjoints of $\mathbb{U}(1)$ and $\boldsymbol{S U}(\mathbb{L})$ are present.
$U(1)$

Dirac Gauginos

\Rightarrow The two MSSM Higgs doublets become an $N=2$ supersymmetry hypermultiplet.
\Rightarrow Two chiral supermultiplets S and T, adjoints of $U(1)$ and $S U(\mathbb{L})$ are present.
$U(1)$

\Rightarrow S and \boldsymbol{T} fermionic components combine with $\mathbf{U}(1)$ and $\mathbf{S U}$ (Z) gauginos to generate Dirac masses for gauginos. P. Fayet, ‘78

$\mathrm{N}=2 / \mathrm{N}=1$ versus $\mathrm{N}=1$ (MDGSSM vs MSSM)

\Rightarrow The two MSSM Higgs doublets become an $N=2$ supersymmetry hypermultiplet.
\Rightarrow Two chiral supermultiplets \mathbf{S} and \mathbf{T}, adjoints of $\mathbf{U}(\mathbf{1})$ and $\mathbf{S U}(\mathbb{Z})$ are present.
$U(1)$

\Rightarrow S and \boldsymbol{T} fermionic components combine with $\mathbf{U}(1)$ and $\mathbf{S U}$ (2) gauginos to generate Dirac masses for gauginos.
P. Fayet, ‘78
\Rightarrow The $\mathrm{N}=1$ Higgs superpotential has a new form:

$$
W_{H i g g s}=\mu \mathbf{H}_{\mathbf{u}} \cdot \mathbf{H}_{\mathbf{d}}+\quad \lambda_{S} \quad \mathbf{S} \mathbf{H}_{\mathbf{u}} \cdot \mathbf{H}_{\mathbf{d}}+2 \lambda_{T} \quad \mathbf{H}_{\mathbf{d}} \cdot \mathbf{T} \mathbf{H}_{\mathbf{u}}
$$

\Rightarrow The N=2 orisin implies: $\quad \lambda_{S}=\frac{g^{\prime}}{\sqrt{2}}, \quad \lambda_{T}=\frac{g_{2}}{\sqrt{2}}$
I. Antoniadis - K.B. - A. Delgado - M. Quiròs, '06

Decoupling the S and T scalars:

2HDM

SUSY braneworlds \longrightarrow Boundaries 4D N=1 SUSY + Bulk 5D N=2 SUSY Make the scalars in S and T adjoints very heavy \longrightarrow 2HDM effective model

- $\mathrm{N}=2$ in the bulk: Non-chiral states (gauge \& Higgs sectors)
- $\mathrm{N}=1$ on the boundaries: Chiral matter (leptons \& quarks)

Higgs potential (neutral components)

$$
V_{E W}=V_{0}+V_{1}+V_{2}
$$

The first part is the MSSM contribution.
$V_{0}=\frac{\left(m_{H_{u}}^{2}+\mu^{2}\right)}{2} h_{u}^{2}+\frac{\left(m_{H_{d}}^{2}+\mu^{2}\right)}{2} h_{d}^{2}-B_{\mu} h_{u} h_{d}+\frac{g^{2}+g^{\prime 2}}{32}\left(h_{u}^{2}-h_{d}^{2}\right)^{2}$
V_{1} is a quartic term:

$$
V_{1}=\frac{\lambda_{S}^{2}+\lambda_{T}^{2}}{4} h_{u}^{2} h_{d}^{2}
$$

V_{2} contains the explicit dependence on the mass parameters of S and T

$$
m_{S} \rightarrow \infty \quad \& \quad m_{T} \rightarrow \infty \quad \Rightarrow \quad V_{2} \rightarrow 0
$$

I. Antoniadis - K.B. - A. Delgado - M. Quiròs, '06
G. Belanger - K.B. - M. Goodsell - C. Moura, ‘09

Remind:

$$
W_{H i g g s}=\mu \mathbf{H}_{\mathbf{u}} \cdot \mathbf{H}_{\mathbf{d}}+\quad \lambda_{S} \quad \mathbf{S} \mathbf{H}_{\mathbf{u}} \cdot \mathbf{H}_{\mathbf{d}}+\quad 2 \lambda_{T} \quad \mathbf{H}_{\mathbf{d}} \cdot \mathbf{T} \mathbf{H}_{\mathbf{u}}
$$

Basis change

Go to the basis where one Higgs has a vev:

$$
\binom{h_{d}}{h_{u}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
s_{\beta} & c_{\beta-\alpha} \\
c_{\beta} & -s_{\beta}
\end{array}\right)\binom{v+\tilde{h}}{\tilde{H}}
$$

The mass matrix is written as:

$$
\mathscr{M}_{\text {Higgs }}^{2} \equiv\left(\begin{array}{cc}
Z_{1} v^{2} & Z_{6} v^{2} \\
Z_{6} v^{2} & m_{A}^{2}+Z_{5} v^{2}
\end{array}\right)
$$

If $\quad Z_{6} \neq 0 \rightarrow$ another rotation:

$$
\binom{\tilde{h}}{\tilde{H}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
s_{\beta-\alpha} & c_{\beta-\alpha} \\
c_{\beta-\alpha} & -s_{\beta-\alpha}
\end{array}\right)\binom{h}{H}
$$

If $\quad Z_{6}=0 \rightarrow$ Alignment without decoupling $\quad h=\tilde{h}$
J. Gunion - H. Haber, ‘02

Alignment without decoupling

The mass matrix is written as:

$$
\mathscr{M}_{H i g g s}^{2} \equiv\left(\begin{array}{cc}
Z_{1} v^{2} & Z_{6} v^{2} \\
Z_{6} v^{2} & m_{A}^{2}+Z_{5} v^{2}
\end{array}\right)
$$

In our $N=2 / \mathrm{N}=1$ model:

$$
Z_{6}=-\frac{1}{2} s_{2 \beta} c_{2 \beta}\left[\frac{\left(g^{2}+g^{\prime 2}\right)}{2}-\left(\lambda_{S}^{2}+\lambda_{T}^{2}\right)\right]
$$

N=2 Higgs requires:

$$
\begin{aligned}
& \lambda_{S}=\frac{g^{\prime}}{\sqrt{2}}, \quad \lambda_{T}=\frac{g_{2}}{\sqrt{2}} \\
& \Rightarrow Z_{6}=0 \quad \Rightarrow \text { Alignment for all values of } \beta
\end{aligned}
$$

The N=2 Strikes Back

The N=2 SUSY strikes back

In 2006 (Before the LHC)
In 2016 (in the LHC era)
I. Antoniadis - K.B. - A. Delgado - M. Quiròs, '06
J. Ellis - J. Quevillon - V. Sanz, '16

This model in light of LHC searches: doubling up SUSY: a way to alignment SUSY phenomenology different from the MSSM

Now

() This is a tree-level alignment. What is the size of the misalignment induced by radiative corrections?

O What is at the origin of this alignment?

The Quantum Menace

Standard ఓHDM parameters

Map our $\mathrm{N}=2 / \mathrm{N}=1$ model onto the 2 HDM with the identification:

$$
\Phi_{2}=H_{u}, \quad \Phi_{1}^{i}=-\epsilon_{i j}\left(H_{d}^{j}\right)^{*} \leftrightarrow\binom{H_{d}^{0}}{H_{d}^{-}}=\binom{\Phi_{1}^{0}}{-\left(\Phi_{1}^{+}\right)^{*}}
$$

$$
\begin{aligned}
V_{4 \Phi}= & \frac{1}{2} \lambda_{1}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{1}{2} \lambda_{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right) \\
& +\left[\frac{1}{2} \lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\left[\lambda_{6}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\lambda_{7}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right] \Phi_{1}^{\dagger} \Phi_{2}+\text { h.c }\right]
\end{aligned}
$$

$$
\lambda_{1}=\frac{1}{4}\left(g_{2}^{2}+g_{Y}^{2}\right) \quad \lambda_{2}=\frac{1}{4}\left(g_{2}^{2}+g_{Y}^{2}\right) \quad \lambda_{3}=\frac{1}{4}\left(g_{2}^{2}-g_{Y}^{2}\right)+2 \lambda_{T}^{2} \quad \lambda_{4}=-\frac{1}{2} g_{2}^{2}+\lambda_{S}^{2}-\lambda_{T}^{2}
$$

$$
\lambda_{5}=\lambda_{6}=\lambda_{7}=0
$$

Compute:

$$
Z_{6}=-\frac{1}{2} s_{2 \beta}\left[\lambda_{1} c_{\beta}^{2}-\lambda_{2} s_{\beta}^{2}-\left(\lambda_{3}+\lambda_{4}+\lambda_{5}\right) c_{2 \beta}\right]
$$

with the radiative corrections

Quantitative Misalignment

K.B. - M. Goodsell - S. Williamson, '18

- $\mathrm{Q}=400 \mathrm{GeV}$ for the low-energy matching scale.
- Good alignment for all values.
- Raising the $\mathrm{N}=2$ scale improves the alignment.

The N=2 SUSY strikes back

In 2006 (Before the LHC)
In 2016 (in the LHC era)
I. Antoniadis - K.B. - A. Delgado - M. Quiròs, '06
J. Ellis - J. Quevillon - V. Sanz, '16

This model in light of LHC searches: doubling up SUSY: a way to alignment SUSY phenomenology different from the MSSM

Now

() This is a tree-level alignment. What is the size of the misalignment induced by radiative corrections?

O What is at the origin of this alignment?

The SU(2) Awakens

A global non-abelian symmetry

$\mathrm{N}=2$ SUSY implies an $U(1)_{R} \otimes S U(2)_{R}$ symmetry:

- $\left(\Phi_{1}, \Phi_{2}\right)^{T} \quad$ form a doublet of $\quad S U(2)_{R}$

A global non-abelian symmetry

$\mathrm{N}=2$ SUSY implies an $U(1)_{R} \otimes S U(2)_{R}$ symmetry:

- $\left(\Phi_{1}, \Phi_{2}\right)^{T} \quad$ form a doublet of $\quad S U(2)_{R}$
- The scalar potential can be written as a sum

$$
V_{4 \Phi}=\sum_{l, m} \lambda_{l l, m>}|l, m\rangle \quad \text { I. Ivanov, ‘07 }
$$

where $|l, m\rangle$ are the representations of $S U(2)_{R}$

A global non-abelian symmetry

$\mathrm{N}=2$ SUSY implies an $U(1)_{R} \otimes S U(2)_{R}$ symmetry:

- $\left(\Phi_{1}, \Phi_{2}\right)^{T} \quad$ form a doublet of $\quad S U(2)_{R}$
- The scalar potential can be written as a sum

$$
V_{4 \Phi}=\sum_{l, m} \lambda_{l l, m>}|l, m\rangle \quad \text { І. Ivanov, ‘o7 }
$$

where $|l, m\rangle$ are the representations of $S U(2)_{R}$
For our $N=2 / \mathbb{N}=1$ SUSY model:

- $\left(\operatorname{ReF} F_{(S, T)}, \frac{D^{a}}{\sqrt{2}}, \quad \operatorname{Im} F_{(S, T)}\right)$ form a triplet of $\operatorname{SU}(2)_{R}$
$\Rightarrow \quad \lambda_{S}=\frac{g^{\prime}}{\sqrt{2}}, \quad \lambda_{T}=\frac{g_{2}}{\sqrt{2}} \quad$ in:
$W_{\mathbf{H i g g s}}=\mu \mathbf{H}_{\mathbf{u}} \cdot \mathbf{H}_{\mathbf{d}}+\quad \lambda_{S} \quad \mathbf{S} \mathbf{H}_{\mathbf{u}} \cdot \mathbf{H}_{\mathbf{d}}+2 \lambda_{T} \quad \mathbf{H}_{\mathbf{d}} \cdot \mathbf{T} \mathbf{H}_{\mathbf{u}}$

Quartic 2HDM potential in the MDGSSM

K.B. - Y. Chen - G. Lafforgue-Marmet, ‘18

The quartic part of the scalar potential takes the form:

$$
V_{4 \Phi}=\lambda_{\mid 0_{1}, 0>}\left|0_{1}, 0\right\rangle+\lambda_{\mid 0_{2}, 0>}\left|0_{2}, 0\right\rangle
$$

where

$$
\begin{aligned}
& \left|0_{1}, 0\right\rangle=\frac{1}{2}\left[\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right]^{2} \\
& \left|0_{2}, 0\right\rangle=-\frac{1}{\sqrt{12}}\left[\left(\left(\Phi_{1}^{\dagger} \Phi_{1}\right)-\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right)^{2}+4\left(\Phi_{2}^{\dagger} \Phi_{1}\right)\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\right]
\end{aligned}
$$

and

$$
\lambda_{\mid 0_{1}, 0>}=\frac{3 g_{2}^{2}}{8} \quad \lambda_{\mid 0_{2}, 0>}=\frac{\left(-2 g_{2}^{2}+g_{Y}^{2}\right)}{8}
$$

Also:

$$
Z_{6}=\frac{1}{2} s_{2 \beta}\left[\sqrt{2} \lambda_{\mid 1,0>}-\sqrt{6} \lambda_{\mid 2,0>} c_{2 \beta}+\left(\lambda_{12,-2>}+\lambda_{\mid 2,+2>}\right) c_{2 \beta} .\right]
$$

$\longrightarrow 0$ for our model

Quadratic 2HDM potential

The quadratic part of the scalar potential takes the form:

$$
\begin{aligned}
V_{2 \Phi}= & \frac{m_{11}^{2}+m_{22}^{2}}{\sqrt{2}} \times \frac{1}{\sqrt{2}}\left[\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right] \\
& +\frac{m_{11}^{2}-m_{22}^{2}}{\sqrt{2}} \times \frac{1}{\sqrt{2}}\left[\left(\Phi_{1}^{\dagger} \Phi_{1}\right)-\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right]-\left[m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2}+\text { h.c }\right]
\end{aligned}
$$

Only the first line is invariant

The minimisation equations lead to: H. Haber - R. Hempfling, '93

$$
0=\frac{1}{2}\left(m_{11}^{2}-m_{22}^{2}\right) s_{2 \beta}+m_{12}^{2} c_{2 \beta} \equiv Z_{6} v^{2}
$$

For our $\mathrm{N}: 2 / \mathrm{N}=1$ model, this fixes β
K.B. - Y. Chen - G. Lafforgue-Marmet, ‘18

Misalignment

Misalignment origins:

K.B. - M. Goodsell - S. Williamson, '18
K.B. - Y. Chen - G. Lafforgue-Marmet, '18

- Threshold corrections from integrating out heavy fields (small)
- Radiative corrections from chiral matter

1. $N=2 \rightarrow N=1$ SUSY running of the couplings:

$$
\begin{aligned}
\lambda_{S}=\neq \frac{g^{\prime}}{\sqrt{2}}, \quad \lambda_{T} \neq \frac{g_{2}}{\sqrt{2}} \Rightarrow \delta Z_{6}^{(2 \rightarrow 1)} & =-\frac{\sqrt{6}}{2} s_{2 \beta} c_{2 \beta} \delta \lambda_{\mid 2,0>}^{(2 \rightarrow 1)} \\
& =-\frac{1}{2} \frac{t_{\beta}\left(t_{\beta}^{2}-1\right)}{\left(t_{\beta}^{2}+1\right)^{2}}\left[\left(2 \lambda_{S}^{2}-g_{Y}^{2}\right)+\left(2 \lambda_{T}^{2}-g_{2}^{2}\right)\right]
\end{aligned}
$$

2. $N=1 \rightarrow N=0$ SUSY breaking:

$$
m_{\tilde{t}}^{2} \neq m_{t}^{2} \quad \Rightarrow \quad \delta Z_{6}^{(1 \rightarrow 0)} \simeq s_{\beta}^{3} c_{\beta} \times \frac{3 y_{t}^{4}}{8 \pi^{2}} \log \frac{m_{\tilde{t}}^{2}}{m_{t}^{2}}
$$

The two contributions are of order 0.1 but with opposite signs.
\longrightarrow Small misalignment

Summary

- Quartic and quadratic Higgs potential have different (tree-level) symmetries.
- N=2 SUSY leads to $\operatorname{SU}(2) \mathrm{R}$-symmetry for the quartic potential.
- $\operatorname{SU}(2)$ symmetry of quartic potential leads to alignment.
- Radiative corrections under control lead to'small misalignment.

Thank You!

Fitting 125 GeV

- SUSY fitting 125.2 GeV Higgs. The cases $\mathrm{M}_{-}\{\mathrm{N}=2\}=\mathrm{M} _$SUSY, $10^{\wedge} 10 \mathrm{GeV}$, $10^{\wedge} 16 \mathrm{GeV}$ are the solid lines in blue, red and purple respectively and are labelled in full; the cases $M_{-}\{N=2\}=10^{\wedge} 4,10^{\wedge} 6,10^{\wedge} 8 \mathrm{GeV}$ are respectively shown in blue dashed, solid green and solid orange curves and only labelled with $\left\{10^{\wedge} 4,10^{\wedge} 6,10^{\wedge} 8\right\}$.

