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Overview

• Introduction

• Unitarity constraints on general theories

• Example in the THDM

• Colourful unitarity



Constraining the electroweak sector of BSM theories

Absence of new particles has led to renewed interest in non-SUSY model building,
mostly with purely phenomenological motivation, e.g.
• THDM variants
• SSM, Z2SSM, inert doublets, singlets, etc
• Georgi-Machacek

These are then hit by the typical toolbox:
• Collider constraints give us information up to a couple of TeV for coloured

particles, but much less for electroweak (few hundred GeV).
• Flavour constraints are very powerful, but again mainly for coloured states. E.g.

10s of TeV vs 600 GeV for charged Higgs from b→ sγ in THDM-II.
• SMEFT program attempts to constrain models from precision (including EWPT).

But we can gain lots of information from the renormalisable terms that are not being
(well) exploited:
• The Higgs mass
• Stability or instability scale of the electroweak vacuum
• Unitarity



Unitarity
• Everyone learns that the Higgs is necessary for unitarisation of
WW →WW scattering.

• Slightly less well known, but still famously, Lee, Quigg and
Thacker used this to place an upper bound on the Higgs mass of
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• 2→ 2 scattering of scalars is sometimes used to constrain BSM
theories: e.g. constraints worked out for THDM [Kanemura,
Kubota, Takasugi]

• Doing the full calculation is rather messy. It’s far easier to use
the Goldstone boson equivalence theorem. From the Ward ID:
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mV
T(Wµ, ...) = T(G, ....)

but εµL →
E�m

kµ

mV
, so we can just calculate T(G, ....)

• This requirement for E� mV might be why people typically only
consider the s→∞ limit of unitarity constraints. But this is not
necessary!



Unitarity basics

Basically:
• Say S = 1+ iT , then for unitary theory (1+ iT)(1− iT †) = 1.
• For 2→ 2 scattering
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• We decompose the matrices into partial waves:
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âbaJ and constraint on eigenvalues:
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• When s→∞ get âJ = aJ



Unitarity diagrams

In the limit of large s, can neglect the cubic couplings:
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• The constraint is a quantification of perturbativity in the quartic coupling
• But it throws away a lot of information! And implies that cubic couplings are not

bounded by unitarity!
• Indeed, if we consider the limit s ∼ κ2�M2

W , then the Goldstone boson
equivalence theorem is still valid (so only compute scalar diagrams) but now get
genuine constraints!



Simplest example
Take a trivial example of

L ⊃ 1
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We shouldn’t be able to take κ arbitrarily large!! And indeed we have limits:
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New information corresponds to:
• Vacuum stability
• Perturbativity of cubic

coupling



Simple to derive a0 for this case:
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For λS . κ/mS has a maximum near s ∼ 6m2
S:
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Stronger and weaker constraints

Constraints can strengthen or weaken:

• Typically maximum a0 for s just above threshold: can be large
enhancement of constraint

• But: maximum s↔ cutoff Λ: if a0 is increasing with s then can
weaken constraints

• Also: trilinear coupling contribution can negatively interfere with
quartic.



Implementation

We implemented this calculation for all uncoloured scalars into
SARAH:

• Can calculate scattering diagrams, and output Fortran code
linked to SPheno library for spectrum generation and numerical
evaluation of unitarity

• Choose the best value of s in range given (e.g. if define theory
with a cutoff then constraints can be weaker)

• Compute eigenvalues of scattering matrix

• Cut out irreducible submatrices if we are near a pole
(perturbation expansion effectively breaks down there)



Example: THDM
These constraints even improve bounds on quartic couplings in theories with a vev!
E.g. in the THDM:
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• With CP, have 8 parameters plus two expectation values minus 2 vacuum
conditions and the weak vev→ 7 free parameters.

• Can trade these formh,mH,mA,mH± , tanβ, tanα andM2
12:
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Unphysical couplings
• Main problem with this: it is very easy to have huge underlying unphysical

couplings!

E.g. enforce the alignment limit of tanα = −1/ tanβ, we can scan over the other
parameters. If we take the Heavy Higgs mass to be 300 GeV and scan only over e.g.
mA =mH+ we find for loop corrections to masses:
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Unitarity

• Better check of perturbativity: use unitarity
• Naively s→∞ limit is enough because only quartic couplings
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• For the above point tβ = −1/tα = 1,mA =mH+,→ λ1 = λ2 and λ4 = λ5:
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• For the extreme casemH =mh ∼
√
s�mA =mH+ = |M12| (nb not the

case on previous slide, where |M12| = 300 GeV), we find the hH2 coupling
dominates:
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• This is dominated by the near-threshold behaviour we saw before, and can
become very large!



Comparison with loop corrections: MSSM limit

The loop corrections to THDM were calculated in s→∞ limit by
[Grinstein, Murphy, Uttayarat, 1512.04567]

Results clearly seen in the “MSSM-like” limit:

λ1 = λ2, λ5 = 0, λ4 = −λ3 − 2λ1

Classic constraints are then just

|8λ1 − λ3| 6 8π, |2λ1 + 2λ3| 6 8π.



Constraints from finite s vs. loop corrections

But: we generate cubic interactions from vevs of H1,H2 → improved
constraints at finite s!
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Summary

• Unitarity constraints give a quantitative definition of perturbativity

• ... and vacuum stability→
• Can now get all of this information automatically: can explore all

sorts of models

• Currently testing implementation of the constraints from colourful
states


