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Constraining the electroweak sector of BSM theories

Absence of new particles has led to renewed interest in non-SUSY model building,
mostly with purely phenomenological motivation, e.g.

® THDM variants
® SSM, Z,SSM, inert doublets, singlets, etc
® Georgi-Machacek

These are then hit by the typical toolbox:

® Collider constraints give us information up to a couple of TeV for coloured
particles, but much less for electroweak (few hundred GeV).

® Flavour constraints are very powerful, but again mainly for coloured states. E.g.
10s of TeV vs 600 GeV for charged Higgs from b — sy in THDM-IL.

® SMEFT program attempts to constrain models from precision (including EWPT).

But we can gain lots of information from the renormalisable terms that are not being
(well) exploited:

® The Higgs mass
® Stability or instability scale of the electroweak vacuum
® Unitarity



Unitarity
Everyone learns that the Higgs is necessary for unitarisation of
WW — WW scattering.

Slightly less well known, but still famously, Lee, Quigg and
Thacker used this to place an upper bound on the Higgs mass of
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2 — 2 scattering of scalars is sometimes used to constrain BSM
theories: e.g. constraints worked out for THDM [Kanemura,
Kubota, Takasugi]

Doing the full calculation is rather messy. It's far easier to use
the Goldstone boson equivalence theorem. From the Ward ID:
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This requirement for E > my might be why people typically only
consider the s — oo limit of unitarity constraints. But this is not
necessary!



Unitarity basics

Basically:
® Say S =1+ iT, then for unitary theory (1 +iT)(1 —1iTt) = 1.
® For 2 — 2 scattering
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® We decompose the matrices into partial waves:
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® In general have aI = ‘/%a}m and constraint on eigenvalues:
Im(a}) > laff?

® Whens — cogetdy = aj



Unitarity diagrams

In the limit of large s, can neglect the cubic couplings:
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® The constraint is a quantification of perturbativity in the quartic coupling
® But it throws away a lot of information! And implies that cubic couplings are not
bounded by unitarity!

® Indeed, if we consider the limit s ~ k2 > M?2,, then the Goldstone boson
equivalence theorem is still valid (so only compute scalar diagrams) but now get
genuine constraints!



Simplest example

Take a trivial example of
1. 5,00, 1 3 1 2

LD-M = A
D 5 §S°+ 3:<S + 5 sS

We shouldn’t be able to take « arbitrarily large!! And indeed we have limits:

ot

s = 500 GeY gt
: " mg = 1000 GeV

New information corresponds to:
® Vacuum stability

® Perturbativity of cubic
coupling

K/mg




Simple to derive a for this case:
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Stronger and weaker constraints

Constraints can strengthen or weaken:

e Typically maximum aq for s just above threshold: can be large
enhancement of constraint

e But: maximum s <+ cutoff A: if qg is increasing with s then can
weaken constraints

e Also: trilinear coupling contribution can negatively interfere with
quartic.



Implementation

We implemented this calculation for all uncoloured scalars into
SARAH:

e Can calculate scattering diagrams, and output Fortran code
linked to sPheno library for spectrum generation and numerical
evaluation of unitarity

e Choose the best value of s in range given (e.qg. if define theory
with a cutoff then constraints can be weaker)

o Compute eigenvalues of scattering matrix

e Cut out irreducible submatrices if we are near a pole
(perturbation expansion effectively breaks down there)



Example: THDM

These constraints even improve bounds on quartic couplings in theories with a vev!
E.g. in the THDM:

Vree =A1H1I* + AalHal* + As[H1 2 Hal? + AglHIH; 2
+m§|H1\2+m§\H2|Z+(M HiH, + = ?\5(HTH1) +h.c.)

® With CP, have 8 parameters plus two expectation values minus 2 vacuum
conditions and the weak vev — 7 free parameters.

® Can trade these for my,, my, ma, M+, tan B, tan o and M3,:
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Unphysical couplings

® Main problem with this: it is very easy to have huge underlying unphysical

couplings!

E.g. enforce the alignment limit of tan « = —1/ tan 3, we can scan over the other
parameters. If we take the Heavy Higgs mass to be 300 GeV and scan only over e.g.
ma = my+ We find for loop corrections to masses:
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Unitarity

® Better check of perturbativity: use unitarity
® Naively s — oo limit is enough because only quartic couplings
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® Forthe above point tg = —1/tq =1, ma = My, = A = A2 and Ay = As:
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® For the extreme case my = mp ~ /s K ma = my+ = |Mia| (nb not the
case on previous slide, where |[M 2| = 300 GeV), we find the hH? coupling
dominates:
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® This is dominated by the near-threshold behaviour we saw before, and can
become very large!



Comparison with loop corrections: MSSM Ilimit

The loop corrections to THDM were calculated in s — oo limit by
[Grinstein, Murphy, Uttayarat, 1512.04567]

Results clearly seen in the “MSSM-like” limit:
A=A, As = 0,Ag = —A3 — 2\;
Classic constraints are then just

I8N\ — A3| < 8, [2A1 + 2A3] < 8.



Constraints from finite s vs. loop corrections

But: we generate cubic interactions from vevs of H;, H, — improved
constraints at finite s!




Summary

Unitarity constraints give a quantitative definition of perturbativity
... and vacuum stability —

Can now get all of this information automatically: can explore all
sorts of models

Currently testing implementation of the constraints from colourful
states



