Dark matter imposters with Higgs portal couplings in multicomponent dark sector

Takaaki Nomura (KIAS)

KIAS

collaborated with

P. Ko (KIAS), Jinmian Li (KIAS→Sichuan U.)

(our paper is under preparation)

2019-02-19 The 4th international workshop on "Higgs as a Probe of New Physics" (HPNP19) @ Osaka U.

Introduction

V_c (km s⁻¹)

Many observation indicate the existence of dark matter

150

100

50

0

Rotation of spiral galaxies

 $v(r) \propto \sqrt{M(r)/r}$

 $M(r) \propto r$ in outside of visible region

Clusters of galaxies

Gravitational lensing

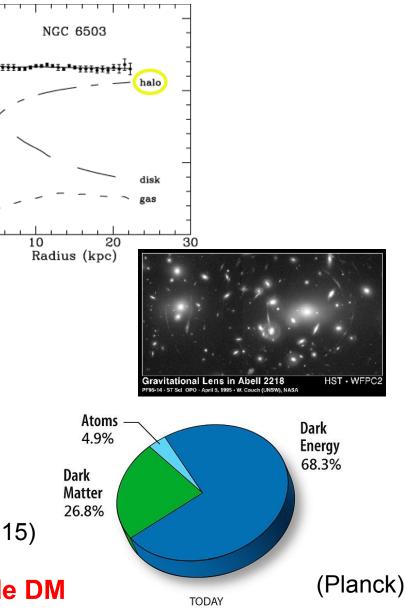
Formation of Large scale structure

CMB anisotropy : WMAP, Planck

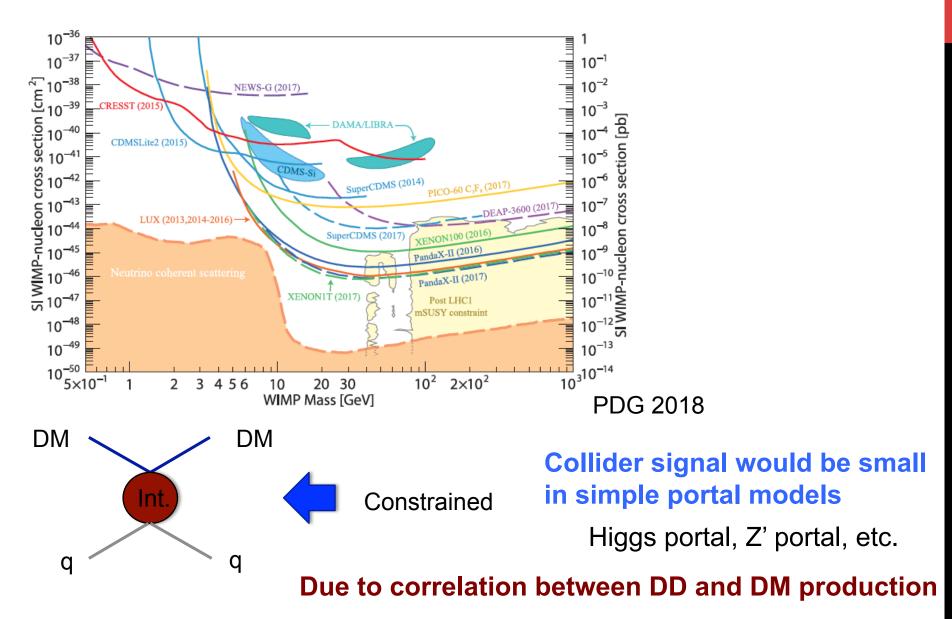
$$\Omega_{DM}h^2 = 0.1188 \pm 0.0010$$

Planck (2015)

WIMP is attractive candidate as particle DM



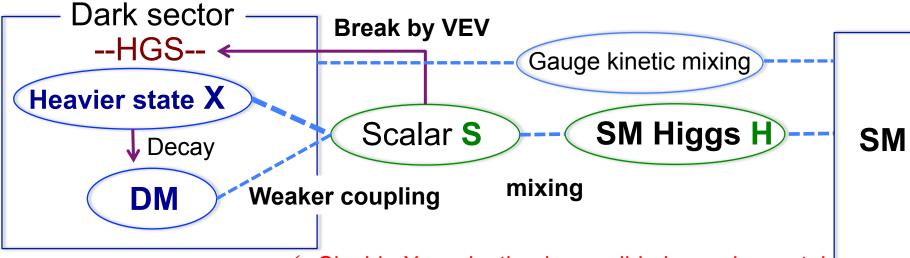
Also we have constrains from direct detection experiments



Correlation between DD and DM production ratio is not necessary

It would be in the case of dark sector with richer structure

In this talk we discuss models with hidden gauge symmetry (HGS)



✓ Sizable X production is possible by scalar portal

Two models will be introduced

Fermionic DM model with U(1)_D gauge symmetry
 Vector DM model with SU(2)_D×U(1)_D gauge symmetry
 Let us explore DM phenomenology of the models

Fermionic DM case

Fermionic DM model with hidden U(1)_D symmetry

New field contetns

Dirac fermions			<u>Scalar</u>	
Fields	χ_1	χ_2	S	√
$U(1)_D$	q_D	$-3q_D$	$4q_D$	√

- ✓ SM fields are not charged under $U(1)_D$
- ✓ These fields are SM singlet

- ✤ U(1)_D gauge symmetry will be broken by VEV of S
- ✤ The lighter mass eigenstate from χ fields is stable due to remnant Z_2
- We have fermionic DM candidate
- Real component of S can mix with the SM Higgs

New Lagrangian

$$\begin{aligned} \mathcal{L} &= \sum_{i=1,2} \overline{\chi}_i (i \not D - m_i) \chi_i - [y_S \overline{\chi}_1 \chi_2 S + H.c.] \\ &- \frac{1}{4} V_{\mu\nu} V^{\mu\nu} + D_\mu S^\dagger D^\mu S + (D_\mu \Phi)^\dagger D^\mu \Phi - V(\Phi, S), \\ V(\Phi, S) &= m_\Phi^2 \Phi^\dagger \Phi + m_S^2 S^\dagger S + \frac{\lambda_\Phi}{2} (\Phi^\dagger \Phi)^2 + \frac{\lambda_S}{2} (S^\dagger S)^2 + \lambda_{\Phi S} (\Phi^\dagger \Phi) (S^\dagger S), \end{aligned}$$

(Φ: SM-like Higgs doublet)

Scalar field components

$$\Phi = \begin{pmatrix} G_W^+ \\ \frac{1}{\sqrt{2}}(v + \tilde{h} + iG_Z) \end{pmatrix}, \quad S = \frac{1}{\sqrt{2}}(v_S + s + iG_{Z'}),$$

NG bosons

• Masses of new particles

Z' boson mass

$$D_{\mu}S(D^{\mu}S)^{\dagger} \supset 8q_{D}^{2}g_{D}^{2}v_{S}^{2}Z_{\mu}'Z'^{\mu} \equiv \frac{1}{2}m_{Z'}^{2}Z_{\mu}'Z'^{\mu} \implies m_{Z'} = 4q_{D}g_{D}v_{S'}$$

$$\mathcal{L} \supset \frac{1}{4} \begin{pmatrix} \tilde{h} \\ s \end{pmatrix}^{T} \begin{pmatrix} \lambda_{\Phi} v^{2} & \lambda_{\Phi S} v v_{S} \\ \lambda_{HS} v v_{S} & \lambda_{S} v_{S}^{2} \end{pmatrix} \begin{pmatrix} \tilde{h} \\ s \end{pmatrix} \Longrightarrow - \begin{bmatrix} m_{h,H}^{2} = \frac{\lambda_{\Phi} v^{2} + \lambda_{S} v_{S}^{2}}{4} \pm \frac{1}{4} \sqrt{(\lambda_{\Phi} v^{2} - \lambda_{S} v_{S}^{2})^{2} + 4\lambda_{\Phi S}^{2} v_{S}^{2}} \\ \begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \tilde{h} \\ s \end{pmatrix}, \sin 2\alpha = \frac{2\lambda_{\Phi S} v_{S}}{m_{h}^{2} - m_{H}^{2}} \end{bmatrix}$$

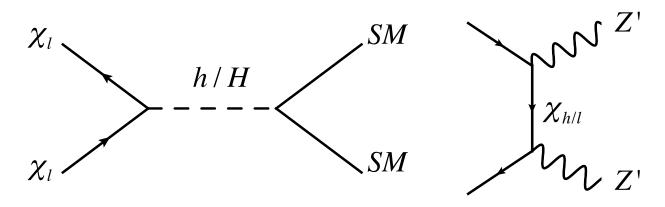
$$M_{\chi} = \begin{pmatrix} m_1 & \frac{y_s v_s}{\sqrt{2}} \\ \frac{y_s v_s}{\sqrt{2}} & m_2 \end{pmatrix} \longrightarrow \begin{pmatrix} m_1 + m_2 \\ \frac{y_s v_s}{\sqrt{2}} & m_2 \end{pmatrix} \longrightarrow \begin{pmatrix} m_1 + m_2 \\ \frac{y_s v_s}{\sqrt{2}} & \frac{1}{2} \sqrt{(m_1 - m_2)^2 + 2y_s^2 v_s^2} \\ \begin{pmatrix} \chi_l \\ \chi_h \end{pmatrix} = \begin{pmatrix} \cos \theta_{\chi} & \sin \theta_{\chi} \\ -\sin \theta_{\chi} & \cos \theta_{\chi} \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}, \\ \sin 2\theta_{\chi} = \frac{\sqrt{2}y_s v_s}{m_{\chi_l} - m_{\chi_h}} \end{pmatrix}$$

Relic density of Fermionic DM

Interactions relevant to DM physics

$$\begin{aligned} \mathcal{L} \supset &\frac{y_{S}s_{\alpha}}{\sqrt{2}} h[2c_{\chi}s_{\chi}\bar{\chi}_{l}\chi_{l} + 2c_{\chi}s_{\chi}\bar{\chi}_{h}\chi_{h} + (c_{\chi}^{2} - s_{\chi}^{2})(\bar{\chi}_{h}\chi_{l} + h.c.)] \\ &+ \frac{y_{S}c_{\alpha}}{\sqrt{2}} H[2c_{\chi}s_{\chi}\bar{\chi}_{l}\chi_{l} + 2c_{\chi}s_{\chi}\bar{\chi}_{h}\chi_{h} + (c_{\chi}^{2} - s_{\chi}^{2})(\bar{\chi}_{h}\chi_{l} + h.c.)] \\ &+ g_{D}q_{D}Z'_{\mu} \left[(1 - 4s_{\chi}^{2})\bar{\chi}_{l}\gamma^{\mu}\chi_{l} - 4c_{\chi}s_{\chi}(\bar{\chi}_{l}\gamma^{\mu}\chi_{h} + h.c.) + (1 - 4c_{\chi}^{2})\bar{\chi}_{h}\gamma^{\mu}\chi_{h} \right] \\ &+ \frac{c_{\alpha}m_{Z'}^{2}}{v_{S}} HZ'_{\mu}Z'^{\mu} + \sum_{f_{SM}} \frac{s_{\alpha}m_{f_{SM}}}{v} H\bar{f}_{SM}f_{SM} + \frac{2s_{\alpha}m_{W}^{2}}{v} HW^{+\mu}W^{-}_{\mu} + \frac{s_{\alpha}m_{Z}^{2}}{v} HZ^{\mu}Z_{\mu} \end{aligned}$$

Dominant DM annihilation processes



Relic density of Fermionic DM

Calculating relic density with micrOMEGAs

Relevant free parameters:

 $\{m_1, m_2, y_S, g_D, v_S, \lambda_{\Phi}, \lambda_S\} \quad (q_{D=1})$

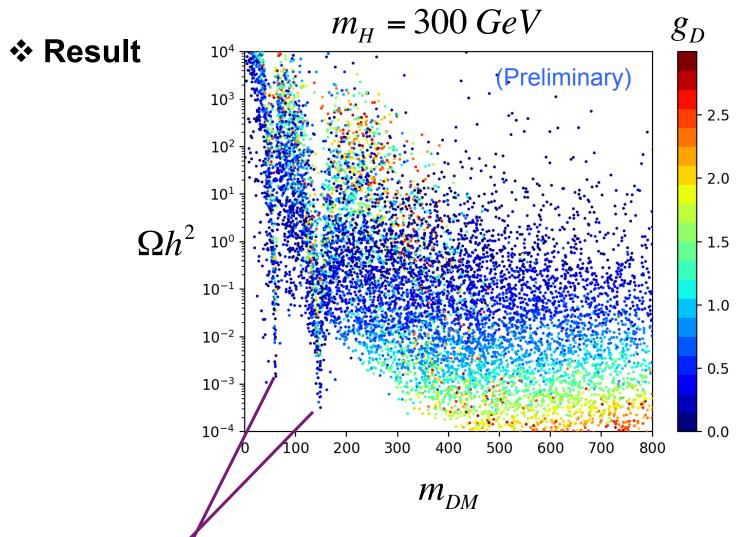
Scanning relevant parameters in the range of:

$$m_{1,2} \in [1.0, 1000] \text{ GeV}, \quad v_S \in [1.0, 2000] \text{ GeV}, \quad g_D \in [3.0 \times 10^{-5}, 3.0],$$

 $y_S \in [-1.0, 1.0], \quad \lambda_{\Phi} \in [10^{-4}, 10], \quad \lambda_S \in [10^{-4}, 10].$

Values given by free parameters:

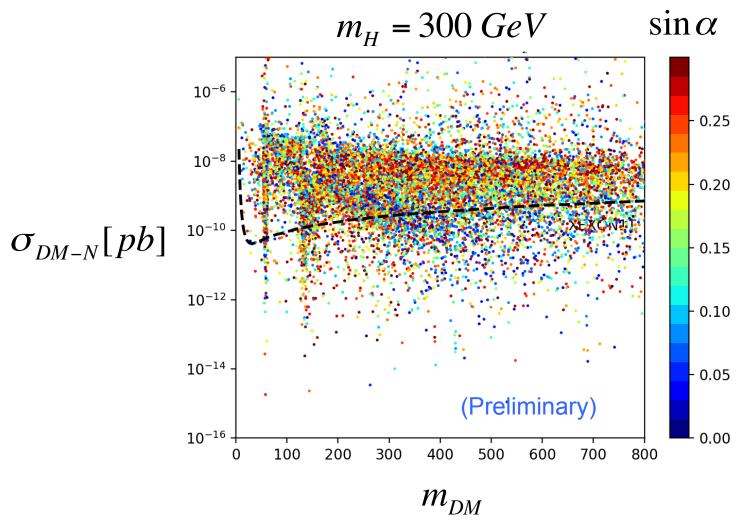
$$\{m_{\chi_l}, m_{\chi_h}, m_{Z'}, m_H, \sin\alpha, \sin\theta_{\chi}, \Omega h^2\}$$



✓ Resonance enhancement in Higgs portal process

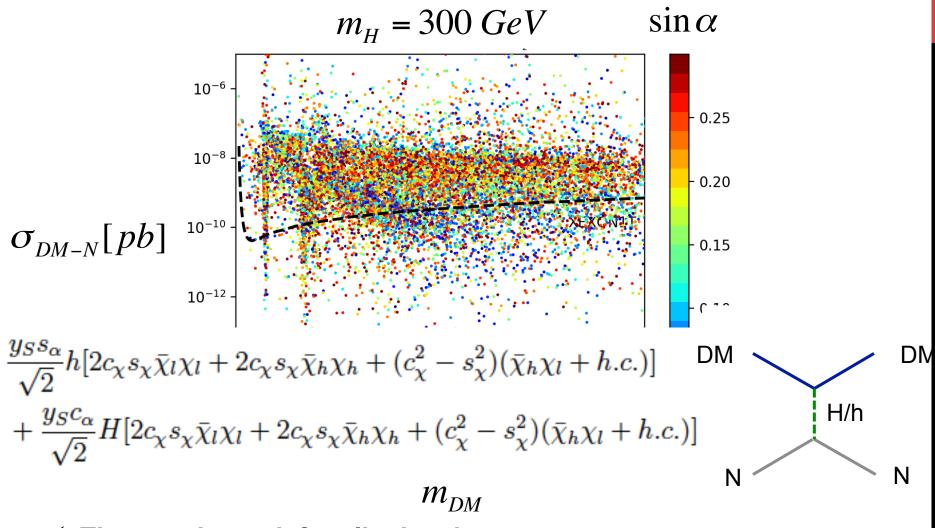
✓ Z'Z' mode is dominant in Heavy DM mass region

Direct detection in Fermionic DM



- ✓ These point satisfy relic density
- \checkmark Sizable scalar mixing is possible; σ_{DM-N} is suppressed by small θ_x

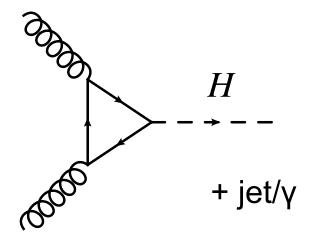
Direct detection in Fermionic DM



- These point satisfy relic density
- \checkmark Sizable scalar mixing is possible; σ_{DM-N} is suppressed by small θ_{y}

Production of hidden Higgs boson and signal of DM

Sluon fusion via scalar mixing



Cross section $\propto (\sin \alpha)^2$

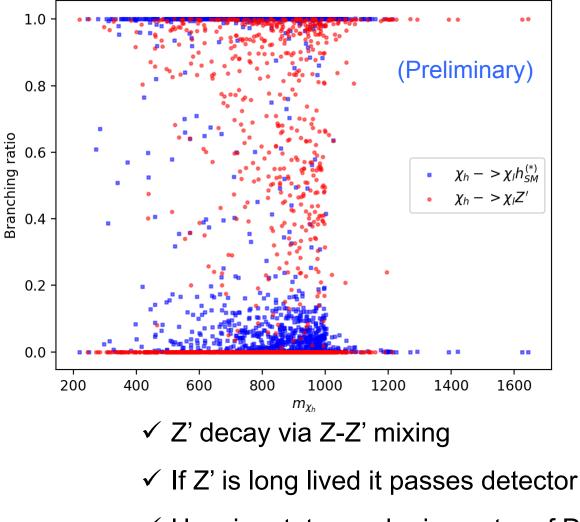
Detectable with sizable mixing α

H decay

$$gg \rightarrow H \rightarrow \chi_l \chi_h, \quad \chi_h \rightarrow \chi_l Z' \quad (Z' \rightarrow f_{SM} \overline{f}_{SM})$$

If kinematically allowed heavier χ state decays into DM + Z'

χ_h decay ratio



✓ Heavier state can be impostor of DM

✓ Sizable signal of missing $E_T + j/\gamma$

Vector DM case

Vector DM model with hidden SU(2)_D×U(1)_D **symmetry**

New field contetns

Fields	H_D	S_D
$SU(2)_D$	2	1
$U(1)_D$	Y_D	Y_S

- ✓ SM fields are not charged under $SU(2)_D \times U(1)_D$
- ✓ These fields are SM singlet
- ✓ Only scalar fields are introduced
- ✓ These scalar VEVs break the symmetry

New Lagrangian

$$\mathcal{L}_{D} = -\frac{1}{4} W_{h}^{a\mu\nu} W_{h\mu\nu}^{a} - \frac{1}{4} F_{h}^{\mu\nu} F_{h\mu\nu} + (D_{\mu}H_{D})^{\dagger} (D^{\mu}H_{D}) + (D_{\mu}S_{D})^{\dagger} (D^{\mu}S_{D}) - V, \qquad (11)$$

$$V = m_{\Phi}^{2} \Phi^{\dagger} \Phi + m_{H_{D}}^{2} H_{D}^{\dagger} H_{D} + m_{S_{D}}^{2} S_{D}^{\dagger} S_{D} + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^{2} + \lambda_{H_{D}} (H_{D}^{\dagger} H_{D})^{2} + \lambda_{S_{D}} (S_{D}^{\dagger} S_{D})^{2} + \lambda_{\Phi H_{D}} (\Phi^{\dagger} \Phi) (H_{D}^{\dagger} H_{D}) + \lambda_{\Phi S_{D}} (\Phi^{\dagger} \Phi) (S_{D}^{\dagger} S_{D}) + \lambda_{H_{D}S_{D}} (H_{D}^{\dagger} H_{D}) (S_{D}^{\dagger} S_{D}), \qquad (12)$$

Scalar filed components

$$\Phi = \begin{pmatrix} G_W^+ \\ \frac{1}{\sqrt{2}}(v + \tilde{h} + iG_Z) \end{pmatrix}, \quad H_D = \begin{pmatrix} G_{W_D}^+ \\ \frac{1}{\sqrt{2}}(v_D + \tilde{h}_D + iG_{Z_{hA}}) \end{pmatrix}, \quad S_D = \frac{1}{\sqrt{2}}(v_S + \tilde{s}_D + iG_{Z_{hB}})$$

Gauge boson mass

$$m_{W_{h}^{\pm}}^{2} = \left(\frac{g_{D}v_{D}}{2}\right)^{2} \qquad m^{2}(W_{h}^{0}, B_{h}) = \frac{1}{4} \begin{pmatrix} g_{D}^{2}v_{D}^{2} & -g_{D}g_{S}v_{D}^{2}Y_{D} \\ -g_{D}g_{S}v_{D}^{2}Y_{D} & g_{S}^{2}(v_{D}^{2}Y_{D}^{2} + v_{S}^{2}Y_{S}^{2}) \end{pmatrix} \equiv \frac{1}{4} \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

$$\begin{bmatrix} m_{Z_{h1}, Z_{h2}}^{2} = \frac{1}{8} \Big[(a+c) \mp \sqrt{(a-c)^{2} + 4b^{2}} \Big], \\ Z_{h1}^{\mu} = \cos\theta_{X}W_{h}^{0\mu} + \sin\theta_{X}B_{h}^{\mu}, \quad Z_{h2}^{\mu} = -\sin\theta_{X}W_{h}^{0\mu} + \cos\theta_{X}B_{h}^{\mu}, \\ \sin 2\theta_{X} = \frac{2b}{m_{Z_{h1}}^{2} - m_{Z_{h2}}^{2}} \end{bmatrix}$$

W_h[±] is the DM candidate in the model

$$\mathcal{L} \supset \frac{1}{2} \begin{pmatrix} \tilde{h} \\ \tilde{h}_D \\ \tilde{s}_D \end{pmatrix}^T \begin{pmatrix} 2\lambda_H v^2 & \lambda_{HH_D} vv_D & \lambda_{HS_D} vv_S \\ \lambda_{HH_D} vv_D & 2\lambda_{H_D} v_D^2 & \lambda_{H_DS_D} v_D v_S \\ \lambda_{HS_D} vv_S & \lambda_{H_DS_D} v_D v_S & 2\lambda_{S_D} v_S^2 \end{pmatrix} \begin{pmatrix} \tilde{h} \\ \tilde{h}_D \\ \tilde{s}_D \end{pmatrix}^T \begin{pmatrix} M_{11}^2 & M_{12}^2 & M_{13}^2 \\ M_{21}^2 & M_{22}^2 & M_{23}^2 \\ M_{31}^2 & M_{32}^2 & M_{33}^2 \end{pmatrix} \begin{pmatrix} \tilde{h} \\ \tilde{h}_D \\ \tilde{s}_D \end{pmatrix}, \qquad \checkmark$$

In general 3 scalars mix

We take following assumption for scalar mass

$$\begin{pmatrix} \tilde{h} \\ \tilde{h}_D \\ \tilde{s}_D \end{pmatrix} \simeq \begin{pmatrix} \cos\beta & 0 & -\sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta \end{pmatrix} \begin{pmatrix} h \\ H_1 \\ H_2 \end{pmatrix}$$

It is for avoiding DM direct detection constraints

$$m_h^2 \simeq \frac{M_{11}^2 + M_{33}^2}{2} - \frac{1}{2}\sqrt{(M_{11}^2 - M_{22}^2)^2 + 4M_{13}^4},$$

$$m_{H_1}^2 \simeq M_{22}^2,$$

$$m_{H_2}^2 \simeq \frac{M_{11}^2 + M_{33}^2}{2} + \frac{1}{2}\sqrt{(M_{11}^2 - M_{33}^2)^2 + 4M_{13}^4},$$

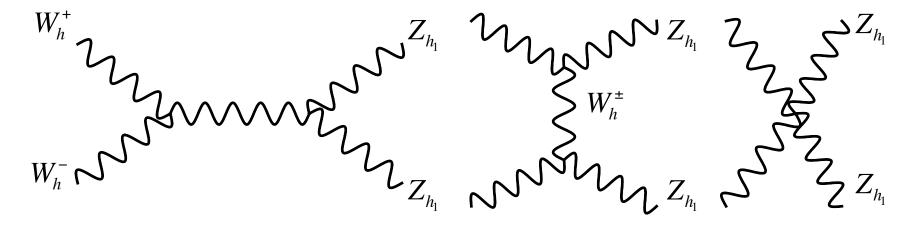
$$\tan 2\beta = \frac{2M_{13}^2}{M_{11}^2 - M_{33}^2}.$$

Relic density of Vector DM

Interactions relevant to DM physics

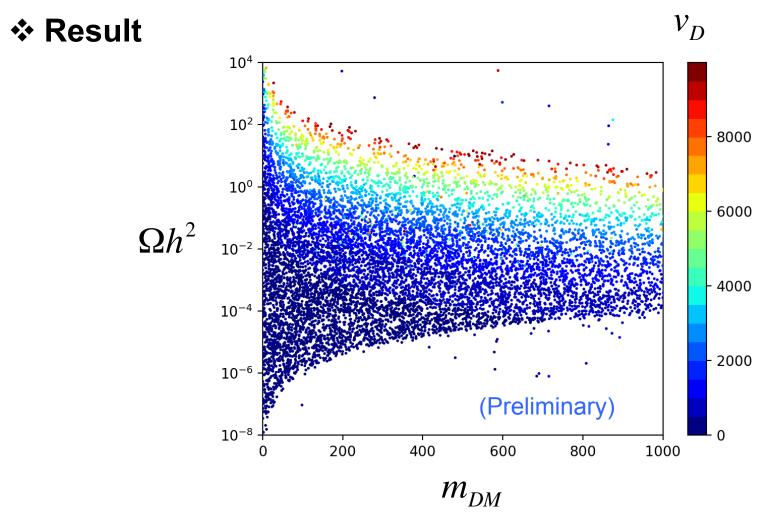
$$L \supset ig_D c_X (\partial_\mu W_{h\nu}^+ - \partial_\nu W_{h\mu}^+) W_h^{-\mu} Z_{h_1}^\nu - ig_D c_X (\partial_\mu W_{h\nu}^- - \partial_\nu W_{h\mu}^-) W_h^{+\mu} Z_{h_1}^\nu + ig_D c_X (\partial_\mu Z_{h_1\nu} - \partial_\nu Z_{h_1\mu}) W_h^{+\mu} W_h^{-\nu} - g_D^2 \bigg[c_X^2 W_{h\mu}^+ W_h^{-\mu} Z_{h_1\nu} Z_{h_1}^\nu - c_X^2 W_{h\mu}^+ W_{h\nu}^- Z_{h_1}^\mu Z_{h_1}^\nu \bigg]$$

Dominant DM annihilation processes

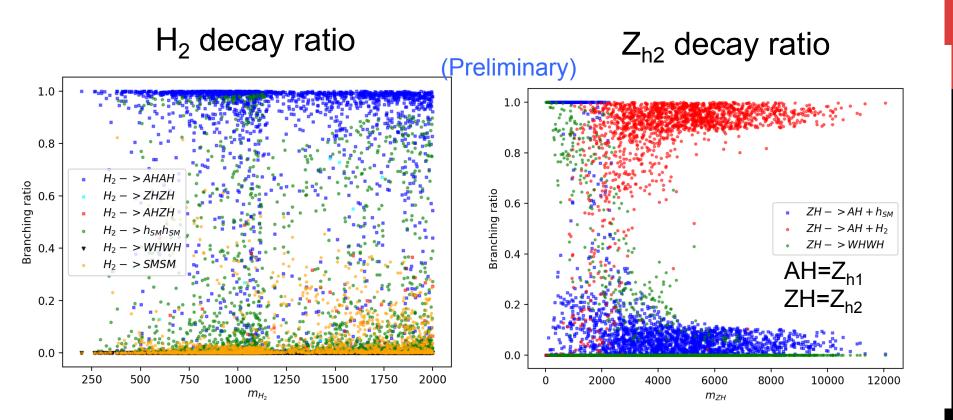


Relevant free parameters: $\{g_D, g_S, v_S, v_D, \lambda_H, \lambda_{S_D}, \lambda_{H_D}\}$ (Y_D=Y_S=1) Scanning range: $v_{S,D} \in [1.0, 10000]$ GeV, $g_{D,S} \in [3.0 \times 10^{-5}, 3.0]$, $\lambda_{H,S_D,H_D} \in [10^{-4}, 10]$,

Relic density of Vector DM



✓ DM-nucleon scattering is suppressed



- ✓ H_2 mainly decay into Z_{h1} or Z_{h2}
- ✓ They decay via kinetic mixing with SM Z boson
- ✓ Heavier state can be impostor of DM if $Z_{h1/2}$ is long lived (small mixing)
- ✓ Sizable signal of missing $E_T + j/\gamma$

Summary and Discussions

DM models with hidden gauge symmetry

- ✓ Multiple components in hidden sector
- ✓ DM stability from remnants of hidden gauge symmetry
- ✓ Mixing in scalar sector giving Higgs portal interaction

DM physics

- $\checkmark\,$ Relic density can be explained by DM DM \rightarrow Z' Z' mode
- ✓ Direct detection constraints can be relaxed
- ✓ Collider signal with sizable cross section of heavier state production
- ✓ Heavier dark state is impostor of DM
- This type of scenario can appear also in other model like NMSSM (fermionic DM case)

Appendix

Full Lagrangian in gauge sector of vector DM model

$$\begin{split} L_{G} = & ig_{D}c_{X}(\partial_{\mu}W_{h\nu}^{+} - \partial_{\nu}W_{h\mu}^{+})W_{h}^{-\mu}Z_{h_{1}}^{\nu} - ig_{D}s_{X}(\partial_{\mu}W_{h\nu}^{+} - \partial_{\nu}W_{h\mu}^{+})W_{h}^{-\mu}Z_{h_{2}}^{\nu} \\ & - ig_{D}c_{X}(\partial_{\mu}W_{h\nu}^{-} - \partial_{\nu}W_{h\mu}^{-})W_{h}^{+\mu}Z_{h_{1}}^{\nu} + ig_{D}s_{X}(\partial_{\mu}W_{h\nu}^{-} - \partial_{\nu}W_{h\mu}^{-})W_{h}^{+\mu}Z_{h_{2}}^{\nu} \\ & + ig_{D}c_{X}(\partial_{\mu}Z_{h_{1}\nu} - \partial_{\nu}Z_{h_{1}\mu})W_{h}^{+\mu}W_{h}^{-\nu} - ig_{D}s_{X}(\partial_{\mu}Z_{h_{2}\nu} - \partial_{\nu}Z_{h_{2}\mu})W_{h}^{+\mu}W_{h}^{-\nu} \\ & - g_{D}^{2}\bigg[c_{X}^{2}W_{h\mu}^{+}W_{h}^{-\mu}Z_{h_{1}\nu}Z_{h_{1}}^{\nu} - 2c_{X}s_{X}W_{h\mu}^{+}W_{h}^{-\mu}Z_{h_{1}\nu}Z_{h_{2}}^{\nu} + s_{X}^{2}W_{h\mu}^{+}W_{h}^{-\mu}Z_{h_{2}\nu}Z_{h_{2}}^{\nu} \\ & - c_{X}^{2}W_{h\mu}^{+}W_{h\nu}^{-}Z_{h_{1}}^{\mu}Z_{h_{1}}^{\nu} + c_{X}s_{X}W_{h\mu}^{+}W_{h\nu}^{-\nu}Z_{h_{1}}^{\mu}Z_{h_{2}}^{\mu} + c_{X}s_{X}W_{h\mu}^{+}W_{h\nu}^{-\nu}Z_{h_{1}}^{\mu}Z_{h_{2}}^{\mu} \\ & - s_{X}^{2}W_{h\mu}^{+}W_{h\nu}^{-}Z_{h_{2}}^{\mu}Z_{h_{2}}^{\nu} - \frac{1}{2}W_{h\mu}^{+}W_{h\nu}^{-\nu}W_{h\nu}^{-\nu} + \frac{1}{2}W_{h\mu}^{+}W_{h}^{-\mu}W_{h\nu}^{+}W_{h\nu}^{-\nu}\bigg], \end{split}$$

Full Lagrangian in gauge sector of vector DM model

$$L \supset \frac{2m_{W_{h}^{\pm}}^{2}}{v_{D}} W_{h\mu}^{+} W_{h}^{-\mu} \tilde{h}_{D} + \frac{m_{W_{h}^{\pm}}^{2}}{v_{D}^{2}} W_{h\mu}^{+} W_{h}^{-\mu} \tilde{h}_{D} \tilde{h}_{D}$$

$$+ \left(\frac{m_{Z_{h_{1}}}^{2}}{v_{D}} - \frac{g_{S}^{2} Y_{S}^{2} v_{S}^{2}}{v_{D}} s_{X}^{2} \right) Z_{h_{1}\mu} Z_{h_{1}}^{\mu} \tilde{h}_{D} + \left(\frac{m_{Z_{h_{2}}}^{2}}{v_{D}} - \frac{g_{S}^{2} Y_{S}^{2} v_{S}^{2}}{v_{D}} c_{X}^{2} \right) Z_{h_{2}\mu} Z_{h_{2}\mu}^{\mu} \tilde{h}_{D}$$

$$+ \frac{1}{2} \left(\frac{m_{Z_{h_{1}}}^{2}}{v_{D}^{2}} - \frac{g_{S}^{2} Y_{S}^{2} v_{S}^{2}}{v_{D}^{2}} s_{X}^{2} \right) Z_{h_{1}\mu} Z_{h_{1}}^{\mu} \tilde{h}_{D} \tilde{h}_{D} + \frac{1}{2} \left(\frac{m_{Z_{h_{2}}}^{2}}{v_{D}^{2}} - \frac{g_{S}^{2} Y_{S}^{2} v_{S}^{2}}{v_{D}^{2}} c_{X}^{2} \right) Z_{h_{2}\mu} Z_{h_{2}}^{\mu} \tilde{h}_{D} \tilde{h}_{D}$$

$$- \frac{g_{S}^{2} Y_{S}^{2} v_{S}^{2}}{2v_{D}} c_{X} s_{X} Z_{h_{1}\mu} Z_{h_{2}}^{\mu} \tilde{h}_{D} - \frac{g_{S}^{2} Y_{S}^{2} v_{S}^{2}}{4v_{D}^{2}} c_{X} s_{X} Z_{h_{1}\mu} Z_{h_{2}}^{\mu} \tilde{h}_{D} \tilde{h}_{D}$$

$$+ \frac{g_{S}^{2} Y_{S}^{2} v_{S} s_{X}^{2}}{4} Z_{h_{1}\mu} Z_{h_{1}}^{\mu} \tilde{s}_{D} + \frac{g_{S}^{2} Y_{S}^{2} v_{S} c_{X}^{2}}{4} Z_{h_{2}\mu} Z_{h_{2}}^{\mu} \tilde{s}_{D} \tilde{s}_{D} + \frac{g_{S}^{2} Y_{S}^{2} v_{S} c_{X} s_{X}}{2} Z_{h_{1}\mu} Z_{h_{2}}^{\mu} \tilde{s}_{D} \tilde{s}_{D}, \quad (A2)$$