

Multi-Higgs production at the LHC in the Type-I 2HDM

Shoaib Munir KIAS, Seoul & ICTP-EAIFR, Kigali

Workshop on Higgs as a Probe of New Physics, Osaka Feb. 20, 2019

- New Higgs bosons in the two-Higgs-doublet model
- □ Type-I 2HDM at the LHC
 - ➤ The H = h₁₂₅ scenario: Multiphoton signatures of neutral and charged pairs of Higgs bosons
 ➤ The h = h₁₂₅ scenario: Electroweak vs. QCD pair-production
- Conclusions

Predicted in a minimalistic new physics contender like the 2HDM as well as in extended frameworks like Supersymmetry and GUTs Could be the earliest signatures of new physics at the LHC

Predicted in a minimalistic new physics contender like the 2HDM as well as in extended frameworks like Supersymmetry and GUTs

Could be the earliest signatures 10² of new physics at the LHC 10 But 1

• Masses (100) GeV:

Small production cross section

- improve statistics

[A. Djouadi, hep-ph/0503173]

Predicted in a minimalistic new physics contender like the 2HDM as well as in extended frameworks like Supersymmetry and GUTs Could be the earliest signatures of new physics at the LHC

But

• Masses (100) GeV:

Small production cross section

- improve statistics

Predicted in a minimalistic new physics contender like the 2HDM as well as in extended frameworks like Supersymmetry and GUTs Could be the earliest signatures of new physics at the LHC But • Masses O(100) GeV:

Small production cross section

- improve statistics

KOREA INSTITUTE FOR ADVANCED

Predicted in a minimalistic new physics contender like the 2HDM as well as in extended frameworks like Supersymmetry and GUTs

Could be the earliest signatures of new physics at the LHC But

• Masses (100) GeV:

Small production cross section

- improve statistics
- Masses (10) GeV:

Large SM Backgrounds - improve search strategies

Predicted in a minimalistic new physics contender like the 2HDM as well as in extended frameworks like Supersymmetry and GUTs

Could be the earliest signatures of new physics at the LHC But

• Masses (100) GeV:

Small production cross section

- improve statistics
- Masses (10) GeV:

Large SM Backgrounds - improve search strategies

Also (in either case)

decay rates to SM particles may be suppressed

Exploit Higgs-Higgs and Higgs-gauge production

2HDM – Scalar Potential

$$\mathcal{V}_{2\text{HDM}} = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}] \\ + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ + \left\{ \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + [\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2)] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right\} .$$

After EW symmetry breaking: $\Phi_i = \begin{pmatrix} \phi_i^{+} \\ (v_i + \phi_i^0 + i\omega_i^0) / \sqrt{2} \end{pmatrix}$

$$\Phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} (G^+ \cos \beta - H^+ \sin \beta) \\ v_1 - h \sin \alpha + H \cos \alpha + i (G \cos \beta - A \sin \beta) \end{pmatrix}$$

$$\Phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} (G^+ \sin \beta + H^+ \cos \beta) \\ v_2 + h \cos \alpha + H \sin \alpha + i (G \sin \beta + A \cos \beta) \end{pmatrix}$$
(a: mixing angle of neutral scalars, $\tan\beta = v_2/v_1$)

> Three neutral Higgs bosons (h, H, A), a H^{\pm} pair > λ_{1-5} (CP-conserving limit: $\lambda_{6,7=0}$) can be traded for Higgs boson masses using tadpole conditions

Minimal Flavour Violation

$-\mathcal{L}_Y = \overline{Q}_L \widetilde{\Phi}_1 \eta_1^U U_R + \overline{Q}_L \Phi_1 \eta_1^D D_R + \overline{Q}_L \Phi_1 \eta_1^L L_R + \overline{Q}_L \widetilde{\Phi}_2 \eta_2^U U_R + \overline{Q}_L \Phi_2 \eta_2^D D_R + \overline{Q}_L \Phi_2 \eta_2^L L_R$

$$\implies M^F = \frac{v}{\sqrt{2}} \left(\eta_1^F \cos\beta + \eta_2^F \sin\beta \right)$$

• To prevent flavour-changing neutral currents, a Z_2 symmetry can be imposed

 \circ Z₂-charge assignments \blacksquare four Types of 2HDM

Model	u_R^i	d_R^i	e^i_R
Type I	Φ_2	Φ_2	Φ_2
Type II	Φ_2	Φ_1	Φ_1
Lepton-specific	Φ_2	Φ_2	Φ_1
Flipped	Φ_2	Φ_1	Φ_2

Minimal Flavour Violation

 Φ_2

Flipped

$$-\mathcal{L}_{Y} = \sum_{\substack{f=u,d,\ell}} \frac{m_{f}}{v} \left(\xi_{h}^{f} \overline{f} fh + \xi_{H}^{f} \overline{f} fH - i\xi_{A}^{f} \overline{f} \gamma_{5} fA \right) \\ - \left\{ \frac{\sqrt{2}V_{ud}}{v} \overline{u} \left(m_{u} \xi_{A}^{u} \mathbf{P}_{L} + m_{d} \xi_{A}^{d} \mathbf{P}_{R} \right) dH^{+} \right. \\ \left. \frac{\xi_{f}^{h} = \cos \alpha / \sin \beta}{\xi_{f}^{H} = \sin \alpha / \sin \beta} \\ + \frac{\sqrt{2}m_{\ell} \xi_{A}^{\ell}}{v} \overline{v_{L}} \ell_{R} H^{+} + \text{h.c.} \right\} \\ \cos \alpha = \sin \beta \sin(\beta - \alpha) + \cos \beta \cos(\beta - \alpha) \\ \left. \frac{Model}{1} \frac{u_{R}^{i}}{\text{Type I}} \frac{d_{R}^{i}}{\Phi_{2}} \frac{d_{R}^{i}}{\Phi_{2}} \frac{e_{R}^{i}}{\Phi_{2}} \\ \left. \frac{\psi_{1}}{\Phi_{2}} \frac{\psi_{1}}{\Phi_{2}} \frac{\psi_{1}}{\Phi_{2}} \frac{\psi_{1}}{\Phi_{1}} \right\}$$

 Φ_1

 Φ_2

- Numerically scan the parameter space using the 2HDMC code [D. Eriksson, J. Rathsman, O. Stal, 0902.0851], requiring consistency of each point with
- ✓ Unitarity, perturbativity and vacuum stability
- ✓ Measurements of oblique parameters S, T and U
- ✓ Constraints from
 - flavour physics

06-1

[F. Mahmoudi, O. Stal [0907.1791]

Ņ

00

Numerical Analysis

[A. Arbey, F. Mahmoudi, O. Stal, T. Stefaniak, [1706.07414]

 $\begin{array}{lll} \mbox{HFLAV Coll., 1612.07233]} & 3.17 \leq & \mbox{BR}(B \to X_s \gamma) \times 10^4 & \leq 3.47 \\ & 0.87 \leq & \mbox{BR}(B_u \to \tau \nu_\tau) \times 10^4 & \leq 1.25 \\ \mbox{LHCb Coll., 1703.05747]} & 2.15 \leq & \mbox{BR}(B_s \to \mu^+ \mu^-) \times 10^9 & \leq 3.85 \end{array}$

THDM Type II - Flavour constraints allowed $b \rightarrow s \gamma$ $\mathbf{B} \rightarrow \tau \nu$ $\bm{D_s} \to \tau ~\nu$ $\Delta M_{\rm B}$ $B_s \rightarrow \mu \mu$ 200 400 1000 800 600 M_{H⁺} (GeV)

✓ Constraints from
 flavour physics 10

- Numerically scan the parameter space using the 2HDMC code [D. Eriksson, J. Rathsman, O. Stal, 0902.0851], requiring consistency of each point with
- ✓ Unitarity, perturbativity and vacuum stability
- ✓ Measurements of oblique parameters S, T and U
- Constraints from
 - flavour physics
- \checkmark Measured h_{125} signal strengths (HiggsSignals)
- ✓ Limits from additional Higgs searches(HiggsBounds)

- Numerically scan the parameter space using the 2HDMC code [D. Eriksson, J. Rathsman, O. Stal, 0902.0851], requiring consistency of each point with
- ✓ Unitarity, perturbativity and vacuum stability
- ✓ Measurements of oblique parameters S, T and U
- Constraints from
 - flavour physics
- \checkmark Measured h_{125} signal strengths (HiggsSignals)
- ✓ Limits from additional Higgs searches(HiggsBounds)
 Parameters with fixed ranges across all scenarios:

$$\sin(\beta - \alpha) = -1 - 1$$
; $m_{12}^2 = 0 - m_A^2 \sin\beta\cos\beta$; $\tan\beta = 2 - 25$

- Numerically scan the parameter space using the 2HDMC code [D. Eriksson, J. Rathsman, O. Stal, 0902.0851], requiring consistency of each point with
- ✓ Unitarity, perturbativity and vacuum stability
- ✓ Measurements of oblique parameters S, T and U
- Constraints from
 - flavour physics
- \checkmark Measured h_{125} signal strengths (HiggsSignals)
- ✓ Limits from additional Higgs searches(HiggsBounds)
 Parameters with fixed ranges across all scenarios:

 $\sin(\beta - \alpha) = -1 - 1$; $m_{12}^2 = 0 - m_A^2 \sin\beta\cos\beta$; $\tan\beta = 2 - 25$

> Cross sections calculated with MadGraph5_aMC@NLO

Scenario 1: $H = h_{125}$

A Light hA Pair

KIAS S KOREA INSTITUTE FOR ADVANCED STUDY

The Landau-Yang theorem forbids the contribution of a resonant Z boson to the QCD production of a hA pair

but not to EW production: enhanced cross sections?

$\mathbf{m}_h + \mathbf{m}_A < \mathbf{m}_Z$

 $m_h = 10 - 80 \text{ GeV}; m_A = 10 - M_Z - m_h \text{ GeV}; m_{H^{\pm}} = 90 - 500 \text{ GeV}$ [R. Enberg, W. Klemm, S. Moretti, SM, 1605.02498]

 $\mathbf{m}_h + \mathbf{m}_A < \mathbf{m}_Z$

 $m_h = 10 - 80 \text{ GeV}; m_A = 10 - M_Z - m_h \text{ GeV}; m_{H^{\pm}} = 90 - 500 \text{ GeV}$ [R. Enberg, W. Klemm, S. Moretti, SM, 1605.02498]

KOREA INSTITUTE FOR ADVANCED

Dominant Search Channels

KOREA INSTITUTE FOR ADVANCED

A Fermiophobic h along with the H^{\pm}

Discovery Potential

 $\sigma(qq' \to H^{\pm}h) \times \mathrm{BR}(H^{\pm} \to W^{\pm}h) \times \mathrm{BR}(h \to \gamma\gamma)^2 \times \mathrm{BR}(W^{\pm} \to \ell^{\pm}\nu)$

q=u,d,c,s

Discovery Potential

KOREA INSTITUTE FOR ADVANCED

 $\sigma(qq' \to H^{\pm}h) \times \mathrm{BR}(H^{\pm} \to W^{\pm}h) \times \mathrm{BR}(h \to \gamma\gamma)^2 \times \mathrm{BR}(W^{\pm} \to \ell^{\pm}\nu)$

q=u,d,c,s

Cut Efficiencies

KIAS S KOREA INSTITUTE FOR ADVANCED STUDY

 $p_T^{\,\gamma}>\!\!20~{
m GeV}$, $p_T^{\,\ell}>\!\!10~{
m GeV}$

m_H	+\ m_h	20	30	40	50	60	70	80	90	100
	80	< 0.01	0.03	0.05	0.06	0.07	0.03			
	90	0.01	0.03	0.06	0.08	0.09	0.09	0.04		
	100	< 0.01	0.04	0.07	0.10	0.11	0.12	0.11	0.05	(/ /
	110	< 0.01	0.03	0.07	0.11	0.13	0.16	0.17	0.15	0.05
	120	< 0.01	0.03	0.07	0.12	0.17	0.19	0.21	0.20	0.14
	130	0.02	0.04	0.07	0.12	0.16	0.21	0.24	0.25	0.22
	140	0.02	0.05	0.08	0.12	0.17	0.23	0.24	0.29	0.26
	150	0.03	0.06	0.10	0.15	0.18	0.25	0.27	0.29	0.30
	160	0.03	0.08	0.11	0.15	0.19	0.23	0.28	0.29	0.34

$$\sqrt{s} = 13 \text{ TeV}$$

$$|\eta| < 2.5$$

$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.4$$

 $p_T^{\,\gamma}>$ 10 GeV, $p_T^{\,\ell}>$ 20 GeV

r	$m_{H^+} \backslash m_h$	20	30	40	50	60	70	80	90	100
	80	0.04	0.08	0.10	0.08	0.05	< 0.01	/ / /		//
	90	0.05	0.10	0.13	0.13	0.10	0.06	< 0.01		
	100	0.05	0.14	0.16	0.16	0.13	0.11	0.06	< 0.01	
	110	0.06	0.13	0.18	0.19	0.17	0.16	0.13	0.07	< 0.01
	120	0.07	0.14	0.20	0.22	0.24	0.22	0.17	0.13	0.06
	130	0.10	0.16	0.23	0.25	0.28	0.25	0.24	0.20	0.15
	140	0.10	0.18	0.23	0.27	0.28	0.31	0.28	0.27	0.21
	150	0.11	0.19	0.26	0.31	0.31	0.33	0.32	0.29	0.27
	160	0.12	0.21	0.26	0.29	0.34	0.34	0.34	0.30	0.32

Cross section can still reach a few fb

[A. Arhrib, R. Benbrik, R. Enberg, W. Klemm, S. Moretti, SM, 1706.01964]

A 3-fold 4-photon Signature

BP	m_h	m_A	$m_{H^{\pm}}$	$\sin(\beta - \alpha)$	m_{12}^2	$\tan \beta$	cos	$\alpha/\sin\beta$
3	14.3	71.6	107.2	-0.061929	2.9	16.307	-7.2	2×10^{-4}
				BP 3				
		σ($q\bar{q} ightarrow h$	$A \rightarrow Z^* + 4\gamma$		1.64 fb)	
		$\left[\sigma(gg \to hA \to Z^* + 4\gamma) \right]$				$[5.7 \times 10^{-2}]$	⁴ fb]	
		$\sigma(q\bar{q} ightarrow H^{\pm}h ightarrow W^{\pm} + 4\gamma)$				88.8 fb)	
		$\sigma(q\bar{q})$	$\rightarrow H^{\pm}A$	$A \to W^{\pm}Z^* + 4$	-γ)	26.8 fb		
			$BR(H^{\pm}$	$E \to W^{\pm}h)$		100 %		
			BR(A	$\to Z^*h)$		90 %		
			BR()	$h \rightarrow \gamma \gamma)$		24 %		
			BR(<i>l</i>	$h ightarrow bar{b})$		60 %		

Scenario 1: $h = h_{125}$

Higgs Pair-Production at the LHC

 $m_H = 150 - 750 \,\text{GeV}; \ m_A = 50 - 750 \,\text{GeV}; \ m_{H^{\pm}} = 50 - 750 \,\text{GeV}$

1.Can the EW production of some neutral di-Higgs states dominate their QCD production?

KI

KOREA INSTITUTE FOR ADVANCED

[R. Enberg, W. Klemm, S. Moretti, SM, 1812.08623]

Higgs Pair-Production at the LHC

 $m_H = 150 - 750 \,\text{GeV}; \ m_A = 50 - 750 \,\text{GeV}; \ m_{H^{\pm}} = 50 - 750 \,\text{GeV}$

Neutral 3-body States

[R. Enberg, W. Klemm, S. Moretti, SM, 1812.08623]

-

KOREA INSTITUTE FOR ADVANCED STUDY

Charged 3-body States

[R. Enberg, W. Klemm, S. Moretti, SM, 1812.08623]

KOREA INSTITUTE FOR ADVANCED STUDY

Couplings of the Higgs Bosons

3.Which Higgs-Higgs and Higgs-gauge couplings of the 2HDM can be probed in various di-Higgs states?

Coupling	1.hh	2.HH	3. AA	4. H^+H^-	5. hH	6. hA	7. hH^{\pm}	8. <i>HA</i>	9. HH^{\pm}	10. AH^{\pm}
a. λ_{hhh}	\checkmark									
b. λ_{hhH}	\checkmark				\checkmark					
c. λ_{hHH}		\checkmark			\checkmark					
d. λ_{hAA}			\checkmark			\checkmark				
e. $\lambda_{hH^+H^-}$				\checkmark			\checkmark			
f. λ_{HHH}		\checkmark								
g. λ_{HAA}			\checkmark					\checkmark		
h. $\lambda_{HH^+H^-}$				\checkmark					\checkmark	
i. λ_{hAZ}						\checkmark				
j. λ_{HAZ}								\checkmark		
k. $\lambda_{H^+H^-Z}$				\checkmark						
l. $\lambda_{hH^+W^-}$							\checkmark			
m. $\lambda_{HH^+W^-}$									\checkmark	
n. $\lambda_{AH^+W^-}$										\checkmark

[R. Enberg, W. Klemm, S. Moretti, SM, 1812.01147]

KOREA INSTITUTE FOR ADVANCED

5

ΚI

Higgs-Higgs/Gauge Couplings

 Z_{\prime}

h

A

20

[R. Enberg, W. Klemm, S. Moretti, SM, 1812.01147]

1			7			4				
Coupling	1.hh	2. <i>HH</i>	3. AA	4. H^+H^-	5. hH	6. hA	$7.hH^{\pm}$	8. <i>HA</i>	9. HH^{\pm}	10. AH^{\pm}
a. λ_{hhh}	$(hhh)^*$				$(hhH)^*$	$(hhA)^*$	$(hhH^{\pm})^*$			
b. λ_{hhH}		hhH			hhh			hhA	hhH^{\pm}	
c. λ_{hHH}		$(hHH)^*$			$(hhH)^*$ hH^+H^-			$(hHA)^*$	$(hHH^{\pm})^*$	
d. λ_{hAA}	(hAA)		$(hAA)^*$	$(hH^+H^-)^*$	HAA	$(hhA)^*$ AAA	$(AAH^{\pm})^*$	$(hHA)^*$		
e. $\lambda_{hH^+H^-}$	hH^+H^-			$(hH^+H^-)^*$	HH^+H^-	AH^+H^-	$(hhH^{\pm})^{*}$ $H^{+}H^{-}H^{\pm}$		$(hHH^{\pm})^*$	$(hAH^{\pm})^*$
f. λ_{HHH}		$(HHH)^*$			$(hHH)^*$			$(HHA)^*$	$(HHH^{\pm})^*$	
g. λ_{HAA}		HAA	$(HAA)^*$		hAA	$(hHA)^*$		$(HHA)^*$ \boxed{AAA}	AAH^{\pm}	HAH^{\pm}
h. $\lambda_{HH^+H^-}$		HH^+H^-		$(HH^+H^-)^*$			$(hHH^{\pm})^*$	AH ⁺ H ⁻	$(HHH^{\pm})^{*}$ $H^{+}H^{-}H^{\pm}$	$(HAH^{\pm})^*$
i. λ_{hAZ}	hAZ		hAZ		HAZ	hhZ AAZ	$AH^{\pm}Z$	hHZ		$hH^{\pm}Z$
j. λ_{HAZ}		HAZ	HAZ		hAZ	hHZ		HHZ AAZ	$AH^{\pm}Z$	$HH^{\pm}Z$
k. $\lambda_{H^+H^-Z}$				H^+H^-Z						
l. $\lambda_{hH^+W^-}$	hH^+W^-			hH^+W^-	HH^+W^-	$ \begin{array}{c} hH^+W^-\\ AH^+W^- \end{array} $	$hh W^{\pm}$ $H^+H^-W^{\pm}$		hHW^{\pm}	hAW^{\pm}
m. $\lambda_{HH^+W^-}$		HH^+W^-		HH^+W^-	hH^+W^-		hHW^{\pm}	$\frac{HH^+W^-}{AH^+W^-}$	$\begin{array}{c} HH W^{\pm} \\ H^{+}H^{-}W^{\pm} \end{array}$	HAW^{\pm}
n. $\lambda_{AH^+W^-}$			AH^+W^-	AH+W-			hAW^{\pm}		HAW^{\pm}	$egin{array}{c} AAW^{\pm} \ H^+H^-W^{\pm} \end{array}$

Higgs-Higgs/Gauge Couplings

 Z_{\prime}

h

20

[R. Enberg, W. Klemm, S. Moretti, SM, 1812.01147]

q		10	\mathcal{Q}		10	9		10		
Coupling	1. hh	2. HH	3. AA	4. H^+H^-	5. hH	6. hA	$7.hH^{\pm}$	$8. \ HA$	9. HH^{\pm}	10. AH^{\pm}
a. λ_{hhh}	$(hhh)^*$				$(hhH)^*$	$(hhA)^*$	$(hhH^{\pm})^*$			
b. λ_{hhH}		hhH			hhh			hhA	hhH^{\pm}	
c. λ_{hHH}		$(hHH)^*$			$(hhH)^*$ hH^+H^-			$(hHA)^*$	$(hHH^{\pm})^*$	
d. λ_{hAA}	(hAA)		$(hAA)^*$	$(hH^+H^-)^*$	HAA	$(hhA)^*$ AAA	$(AAH^{\pm})^*$	$(hHA)^*$		
e. $\lambda_{hH^+H^-}$	hH^+H^-			$(hH^+H^-)^*$	HH^+H^-	AH^+H^-	$(hhH^{\pm})^{*}$ $H^{+}H^{-}H^{\pm}$		$(hHH^{\pm})^*$	$(hAH^{\pm})^*$
f. λ_{HHH}		$(HHH)^*$			$(hHH)^*$			$(HHA)^*$	$(HHH^{\pm})^*$	
g. λ_{HAA}		HAA	$(HAA)^*$		hAA	$(hHA)^*$		$\begin{array}{c} (HHA)^* \\ \hline AAA \end{array}$	$egin{array}{c} AAH^{\pm} \end{array}$	HAH^{\pm}
h. $\lambda_{HH^+H^-}$		HH^+H^-		$(HH^+H^-)^*$			$(hHH^{\pm})^*$	AH^+H^-	$\begin{array}{c} (HHH^{\pm})^{*} \\ H^{+}H^{-}H^{\pm} \end{array}$	$(HAH^{\pm})^*$
i. λ_{hAZ}	hAZ		hAZ		HAZ	$ \begin{array}{c} hhZ\\ AAZ \end{array} $	$AH^{\pm}Z$	hHZ		$hH^{\pm}Z$
j. λ_{HAZ}		HAZ	HAZ		hAZ	hHZ		HHZ AAZ	$AH^{\pm}Z$	$HH^{\pm}Z$
k. $\lambda_{H^+H^-Z}$				H^+H^-Z						
l. $\lambda_{hH^+W^-}$	hH^+W^-			hH^+W^-	HH^+W^-		$hh W^{\pm}$ $H^+H^-W^{\pm}$		hHW^{\pm}	hAW^{\pm}
m. $\lambda_{HH^+W^-}$		HH^+W^-		HH^+W^-	hH^+W^-		hHW^{\pm}	$\frac{HH^+W^-}{AH^+W^-}$	$\begin{array}{c} HH W^{\pm} \\ H^{+}H^{-}W^{\pm} \end{array}$	HAW^{\pm}
n. $\lambda_{AH^+W^-}$			AH+W-	AH ⁺ W ⁻			hAW^{\pm}		HAW^{\pm}	

CONCLUSIONS

- KIAS S KOREA INSTITUTE FOR ADVANCED STUDY
- ${\ }$ Additional Higgs bosons are predicted in most new physics frameworks can be lighter or heavier than the h_{125}
- Even when light, they are difficult to detect at the LHC in the conventional channels, owing to reduced couplings to the SM generally
- In the Type-I 2HDM, 4-photon final states could serve as important probes of a light hA pair as well as of a light hH[±] pair
- EW production essential for charged di-Higgs states - can dominate over QCD even for neutral Higgs boson pairs

THANK YOU! 감사합니다!

Backup: Flavour Constraints

SuperIso Manual [F. Mahmoudi, 0808.3144]

	$2.63 \leq$	${\rm BR}(B \to X_s \gamma) \times 10^4$	≤ 4.23
	0.71 <	$BR(B_u \to \tau \nu_\tau) \times 10^4$	< 2.57
	1.3 <	$BR(B_s \to \mu^+ \mu^-) \times 10^9$	< 4.5
	$-1.7 \times 10^{-2} <$	$\Delta_0(B\to K^*\gamma)$	$< 8.9 \times 10^{-2}$
	0.56 <	$R_{ au u_{ au}}$	< 2.70
	$2.9 \times 10^{-3} <$	${ m BR}(B o D^0 au u_{ au})$	$< 14.2 \times 10^{-3}$
Constraints from	0.151 <	$\xi_{D\ell u}$	< 0.681
		$BR(B_d \to \mu^+ \mu^-)$	$< 1.1 \times 10^{-9}$
<i>Ilavour pnysics</i>	0.6257 <	$\frac{\mathrm{BR}(K \to \mu \nu)}{\mathrm{BR}(\pi \to \mu \nu)}$	< 0.6459
	0.985 <	$R_{\ell 23}$	< 1.013
	$4.7 \times 10^{-2} <$	$BR(D_s \to \tau \nu_{\tau})$	$< 6.1 \times 10^{-2}$
	$4.9 \times 10^{-3} <$	$BR(D_s \to \mu \nu_\mu)$	$< 6.7 \times 10^{-3}$
	$3.0 \times 10^{-4} <$	$BR(D \to \mu \nu_{\mu})$	$< 4.6 \times 10^{-4}$
	$-2.4 \times 10^{-10} <$	δa_{μ}	$< 5.0 \times 10^{-9}$