Lepton-nucleus CLFV scattering $\ell_i N \rightarrow l_j X$ by scalar interaction

Masato Yamanaka (Kyushu Sangyo Univ.)

M. Takeuchi, Y. Uesaka, M.Y., arXiv:1903.XXXXX

 $\ell_i N \rightarrow \ell_j X$ by mediators interacting with heavy quarks (1) new subprocess $\ell_i g \rightarrow \ell_j g$ (2) effects of *q*-number conservation and of phase space

Charged Lepton Flavor Violation in *lN* scattering

<u>Topic</u>

CLFV mediated by (pseudo-)scalar which mainly interacting with heavy quarks

Higgs, CP-odd Higgs, KK Higgs, Flavon, R-parity violating slepton, etc Variety of applications!

A promising way to search for CLFV $\ell_i + N \rightarrow \ell_i + X$ (N: Nucleus)

- Many experiments launch (ILC, LHeC, etc.)
- Sensitivity comparable to other CLFV
- Unique probe to some CLFV ope.

Precisely relate the CLFV parameter and the observables of $\ell_i N \rightarrow \ell_j X$!!

N -

X

CLFV scattering mediated by (pseudo-)scalar

A simplest extension for interactions of CLFV (pseudo-)scalar

$$\mathcal{L}_{\text{CLFV}} = \sum_{X=S,A} \left(-\rho_{ij}^X \bar{\ell}_j P_L \ell_i \phi_X - \rho_{ji}^X \bar{\ell}_j P_R \ell_i \phi_X \right) + h.c.$$

$$\mathcal{L}_q = -\rho_{qq}^S \bar{q}q\phi_S - \rho_{qq}^A \bar{q}\gamma^5 q\phi_A + h.c.$$

 ρ_{ij}, ρ_{ji} : CLFV parameter (i, j: flavor index)

CLFV scattering mediated by (pseudo-)scalar

A simplest extension for interactions of CLFV (pseudo-)scalar

$$\mathcal{L}_{\text{CLFV}} = \sum_{X=S,A} \left(-\rho_{ij}^{X} \bar{\ell}_{j} P_{L} \ell_{i} \phi_{X} - \rho_{ji}^{X} \bar{\ell}_{j} P_{R} \ell_{i} \phi_{X} \right) + h.c.$$

$$\mathcal{L}_{q} = -\rho_{qq}^{S} \bar{q} q \phi_{S} - \rho_{qq}^{A} \bar{q} \gamma^{5} q \phi_{A} + h.c.$$

$$\rho_{ij}, \rho_{ji} : \text{CLFV parameter} (i, j : \text{flavor index})$$

$$g = \sum_{q \neq q} \left(\frac{q}{q} + \frac{q}{q} + \frac{q}{(j + 1)} \right) + \frac{q}{(j + 1)} \left(\frac{q}{q} + \frac{q}{(j + 1)} + \frac{q}{(j + 1)} \right) + \frac{q}{(j + 1)} \left(\frac{q}{q} + \frac{q}{(j + 1)} \right)$$

$\phi_{S(A)}gg$ effective coupling

$$\mathcal{L}_G = g_{Sgg} \phi_S G^a_{\mu\nu} G^{a\mu\nu} + g_{Agg} \phi_A G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

Carefully handle following issues to determine CLFV ope.

- Strong dependence of momentum transfer
- Pattern of mediator-quark interaction
- Sizable contributions of c- and b-quarks in addition to t-quark

(a)
$$\rho_{cc}^{S(A)} = 1$$
, $\rho_{bb}^{S(A)} = \rho_{tt}^{S(A)} = 0$
(b) $\rho_{bb}^{S(A)} = 1$, $\rho_{cc}^{S(A)} = \rho_{tt}^{S(A)} = 0$
(c) $\rho_{cc}^{S(A)} = y_c$, $\rho_{bb}^{S(A)} = y_b$, $\rho_{tt}^{S(A)} = y_t$

$$\mathcal{L}_{\text{dipole}} = -\frac{e}{2}m_j \sum_{X=S,A} \left(A_{ij}^X \bar{\ell}_j \sigma^{\mu\nu} P_L \ell_i F_{\mu\nu} + A_{ji}^X \bar{\ell}_j \sigma^{\mu\nu} P_R \ell_i F_{\mu\nu} \right)$$

$$A_{ij} = \frac{1}{16\pi^2 v^2} \left(A_1 + A_2^{t,b} + A_2^W \right)$$

Sensitive to models and mediator masses

Event rate via the dipole operator is useful for model discrimination

$m_{\phi} [{ m GeV}]$	125	200	300	400	500
$10^3 \times \tilde{A}_1^f(r_{\tau/\phi})$	2.0025	0.8872	0.4345	0.2605	0.1747
$10^3 \times \tilde{A}_2^{t,H}(r_{t/\phi})$	6.2431	4.6631	3.4720	2.7435	2.2504
$10^3 imes \tilde{A}_2^{t,A}(r_{t/\phi})$	8.9039	6.5746	4.8361	3.7840	3.0785
$10^3 \times \tilde{A}_2^{b,H}(r_{b/\phi})$	0.0407	0.0208	0.0114	0.0073	0.0052
$10^3 imes \tilde{A}_2^{b,A}(r_{b/\phi})$	0.0508	0.0255	0.0138	0.0088	0.0062
$10^3 imes \tilde{A}^W_{2,\phi}(r_{W/\phi})$	-14.0380	-8.8698	-5.1773	-2.9841	-1.5079

e.g. coefficients in 2HDM as a function of scalar mass

Subprocess of CLFV scattering $\ell_i N \rightarrow \ell_j X$

Take into account the ϕgg coupling and q-number conservation

Cross section

See e.g. T. Stavreva, F. I. Olness, et al, (2012) and M. Takeuchi, Y. Uesaka, M.Y., PLB772 (2017)

- x : Bjorken variable
- y : measure of inelasticy

- Momentum fraction : $\xi = \frac{Q^2 + w^2}{Q^2} x$
- Invariant mass of \hat{X} : $w^2 = (p_q + p_{q'})^2$
- Momentum transfer : $Q^2 = -(p_i p_f)^2$

Example: SM-Higgs and a heavy scalar

Large enhancement by new subprocess $\ell g \rightarrow \tau g$

Large correction of σ arises from *q*-number conservation

 $\tau b \overline{b}$ channel begins to be relevant at $E_{\ell}^{\text{Lab}} \simeq 500 \text{ GeV}$ (estimated in previous works as $E_{\ell}^{\text{Lab}} \simeq 50 \text{ GeV}$)

	ILC	v factory
SM Higgs CLFV	0(10) event/year	O(0.1) event/year
CLFV via a heavy scalar	$O(10^5)$ event/year	$O(10^3)$ event/year

Momentum distribution of final lepton

Momentum distribution of final lepton

Improved subprocesses and distributions

Combining jet multiplicity, each one shows distinctive distribution

Important to analyze exp. data with improved ones to determine CLFV ope.

Summary

- Focusing on CLFV mediated by (pseudo-) scalars mainly interacting with heavy flavor
- ☑ Reanalysis on $\ell_i N \rightarrow \ell_j X$ taking into account important ingredients
 - (1) gluon contribution $\ell_i g \rightarrow \ell_j g$

(2) q-number conservation $\ell_i g \rightarrow \ell_j q \overline{q}$

Enhanced event rate and improved momentum distributions determine CLFV ope.

Thank you very much!

Backup slides

