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Some of the Recent Discoveries and future 

Standard Model (SM)

can not explain such observation

Extension of the SM is necessary through 
an SM singlet Right Handed Neutrino

Seesaw mechanism 

Invisible decay

Discovery  
of Higgs 

Beyond the SM 
signature 

Neutrino oscillations experiments 
confirm the existence of the tiny neutrinos 

mass and flavor mixing

Can relate

Can be tested @Collider/s in future

Explains the tiny  
neutrino mass



A slice of BSM Scenarios
Vacuum stability 

(Branchina)
CP Asymmetry

Leptogenesis, 
Baryogenesis, Cosmological 

implications (Ramsey-Musolf, Fuyuto, 
Konstandin,Bruggisser, 

Senaha)

Models 
generated neutrino mass 

at one loop or more loops which 
include dark matter, Z’, extra 
scalar, Scotogenic models 

(Archie)

scenario where a variety of searches have been performed 
including    and heavy neutrinos at the LHC, even people studied 
dark matter. ATLAS rules out (1809.11105)  
for Majorana and Dirac heavy neutrinos for

SU(3) × SU(2)L × SU(2)R × U(1)B−L

WR

MWR
= 4.7 TeV

MNR
= 1.2 TeV for eejj MNR

= 1 TeV for μμjj

Also long lived  
(Okada), Charged Higgs 
(Song), Higgs inflation 

(Park, Paßehr), 
Hierarchy problem (Iso), 

Topological 
aspects-2HDM (Nitta), 
Higgs Instability (Han), 

CLFV (Yamanaka)

Discovery 
in 

future

Dark matter, 
Long-lived 

(Grzadkowski, Keus, Matsui, 
Nomura, Toma, Tseng, 

Redondo)

Tree level 
neutrinos mass, BSM 
gauge bosons (Z’) and 

Higgs (Das)

Includes (plenty 
of) scalars, at 

different varieties
(SUSY-LR-type-II: Huitu)

(Multi-)Higgs scenarios (Haber, Cao, 
Ferreira, Santos, Muhlleitner,Ko, Ivanov, 
Goodsell, Benakli,Masubuchi,Heinemeyer, 
Munir, Chun, Kanemura), Future colliders (Su, 
Vos), Composite Higgs (De Curtis,Enberg, 
Flacke), Higgs couplings (Chiang), Exotic 
contributions (Logan), Light scalars (Wu), EFT 
(Tian), Precision (Yagyu)

250 GeV ILC/collider/ 
associate production, QCD 
(Mawatari, Matsuzaki), New 

physics scale (Ge), ILC 
(Okada, Fuji)

GHU 
(Hosotani, Lim)



Particle content of the model Linear combination  
of the SM 

and  
U(1)Y

U(1)B−L

3 generations of  
SM singlet  

right handed  
neutrinos (anomaly free)
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3 2 1/6 (1/6)xH + (1/3)x�

ui
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3 1 2/3 (2/3)xH + (1/3)x�

di
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3 1 �1/3 �(1/3)xH + (1/3)x�

`i
L

1 2 �1/2 (�1/2)xH � x�

ei
R

1 1 �1 �xH � x�

H 1 2 �1/2 (�1/2)xH

N j

R
1 1 0 �x�

� 1 1 0 +2x�

Table 1: Particle content of the minimal U(1)X model, where i, j = 1, 2, 3 are the generation
indices. Without loss of generality, we fix x� = 1.

group, SU(3)c⇥SU(2)L⇥U(1)Y⇥U(1)X , where U(1)X is realized as a linear combination of the
SM U(1)Y and U(1)B�L symmetry (the so-called non-exotic U(1) extension of the SM [21]).
The particle content of the model is listed in Table 1. The structure of the model is the same
as the minimal B � L model except for the U(1)X charge assignment. In addition to the SM
particle content, this model includes three generations of RHNs required for the cancellation
of the gauge and the mixed-gravitational anomalies, a new Higgs field (�) which breaks the
U(1)X gauge symmetry, and a U(1)X gauge boson (Z 0). The U(1)X charges are defined in
terms of two real parameters xH and x�, which are the U(1)X charges associated with H and
�, respectively. In this model x� always appears as a product with the U(1)X gauge coupling
and is not an independent free parameter, which we fix to be x� = 1 throughout this letter.
Hence, U(1)X charges of the particles are defined by a single free parameter xH . Note that this
model is identical to the minimal B � L model in the limit of xH = 0.

The Yukawa sector of the SM is then extended to include
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where the first and second terms are the Dirac and Majorana Yukawa couplings. Here we
use a diagonal basis for the Majorana Yukawa coupling without loss of generality. After the
U(1)X and the EW symmetry breakings, U(1)X gauge boson mass, the Majorana masses for
the RHNs, and neutrino Dirac masses are generated:
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where gX is the U(1)X gauge coupling, v� is the � VEV, vh = 246 GeV is the SM Higgs VEV,
and we have used the LEP constraint [23, 24] v�2

� vh2.
Let us now consider the RHN production via Z 0 decay. The Z 0 boson partial decay widths

into a pair of SM chiral fermions (fL) and a pair of the Majorana RHNs, respectively, are given
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 breaking
U(1)X

Involves a neutral BSM gauge boson Z′�



Interaction between the SM leptons and
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Interaction between the SM leptons and Z′�



Interaction between the SM Higgs and       Z
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Comparing dimuon production with the ATLAS results at 36/fb [1707.02424] and  
future 3/ab [CERN-LHCC-2017-018 ; ATLAS-TDR-027] luminosities, we put bounds  
on the                    plane for different choices of           (1812.11931v1)gx vs M′�Z xH

xΦ = 1

Z Z′�



Higgs production at the linear collider 

e+e− → Z, Z′� → Zh
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Deviation of cross sections Deviation = [1 −
σBSM[ECM, gx, xH, MZ′�]

σSM[ECM] ] * 100 %

-3 -2 -1 0 1

0

2

4

6

8

xH

de
vi
at
io
n[
%
] ECM=1 TeV

M′�Z = 7.5 TeV



500 1000 1500 2000 2500 3000
0.1

0.5

1

5

10

50

100

s [GeV]

de
vi
at
io
n[
%
]

Deviation of cross sections Deviation = [1 −
σBSM[ECM, gx, xH, MZ′�]

σSM[ECM] ] * 100 %

xH = − 1.1

xH = − 0.8



Conclusions
Several experimental results on the neutrino oscillation, DM have established 

the fact that the SM is not a complete one. In order to explain a simple scenario 
where a variety of such beyond the SM scenarios can be observed, we tried to 
figure out a general U(1) extension of the SM.

We have found that the in such models a neutral BSM gauge boson, commonly 
known as the Z’ boson can be studied. As the U(1) charge sector is a free 
parameter even after the anomaly cancellations, the charge of the U(1) sector plays 
a crucial role in the observation of the BSM scenarios at the different colliders. 

So far we have tested the Z’ production at the linear collider followed by the decay 
into Higgs in association with SM Z boson. In this ongoing analysis we can further 
decay the Z and the Higgs depending upon the nature of the collider (SM 
backgrounds) and try to find the significance of the Z’ discovery.  We have found 
that even at the (250 GeV) linear collider we can probe 7.5 TeV Z’.

Slight variation of such model can study deeply the neutrino mass generations 
mechanisms, DM scenario and vacuum stability. The simplicity of such models are 
very attractive, however, having a plenty of phenomenological aspects which can 
be tested in the current and future experiments.
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