CP-violation at the LHC

R. Santos

ISEL \& CFTC-UL

HPNP2019 - U. Osaka

18 February 2019

Outline

A complex 2 HDM
© CP-violation in the bosonic Higgs couplings
(3) CP-violation in the combination of Higgs decays
© Some variables to probe CP-violation
© CP-violation in the triple gauge boson couplings
$\because C P$-violation in the Yukawa couplings
(CP-violation - a strange scenario

O Conclusions

A complex 2HDM

$$
\begin{aligned}
V= & m_{11}^{2}\left|\Phi_{1}\right|^{2}+m_{22}^{2}\left|\Phi_{2}\right|^{2}-m_{12}^{2}\left(\Phi_{1}^{\dagger} \Phi_{2}+h . c .\right) \\
& +\frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)+\frac{\lambda_{5}}{2}\left[\left(\Phi_{1}^{\dagger} \Phi_{2}\right)+h . c .\right]
\end{aligned}
$$

and CP is explicitly and not spontaneously broken

$$
<\Phi_{1}>=\binom{0}{\frac{v_{1}}{\sqrt{2}}} \quad<\Phi_{2}>=\binom{0}{\frac{v_{2}}{\sqrt{2}}}
$$

- $m^{2}{ }_{12}$ and λ_{5} real $2 H D M$
- $\mathrm{m}^{2}{ }_{12}$ and λ_{5} complex C2HDM
$\tan \beta=\frac{v_{2}}{v_{1}}$ ratio of vacuum expectation values
$\longrightarrow 2$ charged, $H \pm$, and 3 neutral $C P$-conserving $-h, H$ and A CP-violating - h_{1}, h_{2} and h_{3}
\Rightarrow rotation angles in the neutral sector
soft breaking parameter

$$
\begin{aligned}
& C P \text {-conserving - } m^{2}{ }_{12} \\
& C P \text {-violating - } \operatorname{Re}\left(m^{2}{ }_{12}\right)
\end{aligned}
$$

h_{125} couplings

$$
g_{2 H D M}^{h V V}=\sin (\beta-\alpha) g_{S M}^{h V V}
$$

CP-VIOLATING 2HDM

"Pseudoscalar" component (doublet)
$g_{C 2 H D M}^{h V V}=\cos \widehat{\alpha_{2} g_{2 H D M}^{h V V}}$

$$
\begin{aligned}
& \left|s_{2}\right|=0 \Rightarrow h_{1} \text { is a pure scalar, } \\
& \left|s_{2}\right|=1 \Rightarrow h_{1} \text { is a pure pseudoscalar }
\end{aligned}
$$

Type I $\quad \kappa_{U}^{\prime}=\kappa_{D}^{\prime}=\kappa_{L}^{\prime}=\frac{\cos \alpha}{\sin \beta}$
Type II $\quad \kappa_{L}^{\prime \prime}=\frac{\cos \alpha}{\sin \beta} \quad \kappa_{D}^{\prime \prime}=\kappa_{L}^{\prime \prime}=-\frac{\sin \alpha}{\cos \beta}$

$$
Y_{C 2 H D M}=\cos \alpha_{2} Y_{2 H D M} \pm i \gamma_{5} \sin \alpha_{2} \tan \beta(1 / \tan \beta)
$$

Type $\mathrm{F}(\mathrm{Y}) \quad \mathrm{K}_{U}^{F}=\mathrm{K}_{L}^{F}=\frac{\cos \alpha}{\sin \beta} \quad \kappa_{D}^{F}=-\frac{\sin \alpha}{\cos \beta}$
Type LS(X) $\quad \kappa_{U}^{L S}=\kappa_{D}^{L S}=\frac{\cos \alpha}{\sin \beta} \quad \kappa_{L}^{L S}=-\frac{\sin \alpha}{\cos \beta}$
THREE NEUTRAL STATES MIX

CP-viOLATING 2HDM $\quad\left[h_{i}\right]_{\text {mass }}=\left[R_{i j}\left[h_{j}\right]_{\text {gauge }} \quad\left[R_{i j}\right]=\left(\begin{array}{ccc}c_{1} c_{2} & s_{1} c_{2} & s_{2} \\ -\left(c_{1} s_{2} s_{3}+s_{1} c_{3}\right) & c_{1} c_{3}-s_{1} s_{2} s_{3} & c_{2} s_{3} \\ -c_{1} s_{2} c_{3}+s_{1} s_{3} & -\left(c_{1} s_{3}+s_{1} s_{2} c_{3}\right) & c_{2} c_{3}\end{array}\right)\right.$

\therefore CP-violation in bosonic decays

Correlations in the momentum distributions of leptons produced in the decays

$$
\begin{aligned}
& h \rightarrow Z Z^{*} \rightarrow \bar{l} l \bar{l} l \\
& h \rightarrow W W^{*} \rightarrow\left(l_{1} \nu_{1}\right)\left(l_{2} \nu_{2}\right)
\end{aligned}
$$

Choi, Miller, Mühlleitner, Zerwas, PlB553, 61 (2003).
Buszello, Fleck, MARQuard, van der BiJ, EPJC32, 209 (2004)

Obtained 95\% CL intervals on the allowed cou-
plings of alternative, not SM-like, spin-zero states with respect to those of the SM scalar state.

	α / κ	β / κ	γ / κ	$\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4 \mid$	$\beta / \kappa<10^{-2}$
ATLAS CMS	not tested $[-1.2,1.5]$	$\begin{gathered} {[-2.5,0.75]} \\ {[-\infty, 0.69][1.9,2.3]} \end{gathered}$	$\begin{gathered} {[-0.95,2.9]} \\ {[-2.2,2.1]} \end{gathered}$		
ATLAS	not tested	[-0.4, 0.85] [1, 2.2]	[-5, 6]		
CMS	$[-\infty,+\infty]$	$[-\infty, 0.71][1.2,+\infty]$	$[-\infty,+\infty]$	$\mathrm{H} \rightarrow \mathrm{WW} \rightarrow 2 \mathrm{l} 2 \mathrm{v}$	KARYtov - talk at HiggsDays 2015
ATLAS	not tested	[-0.63, 0.73]	$[-0.83,2.2]$		
CMS	$[-1.7,1.6]$	$[-0.76,0.58]$	$[-1.6,1.5]$	8 TeV results	

CMS PAS FTR-18-011

Table 10: Summary of the 95% CL intervals for $f_{a 3} \cos \left(\phi_{a 3}\right)$, under the assumption $\Gamma_{\mathrm{H}}=\Gamma_{\mathrm{H}}^{\mathrm{SM}}$, and for Γ_{H} under the assumption $f_{a i}=0$ for projections at $3000 \mathrm{fb}^{-1}$. Constraints on $f_{a 3} \cos \left(\phi_{a 3}\right)$ are multiplied by 10^{4}. Values are given for scenarios S1 (with Run 2 systematic uncertainties [47]) and the approximate S2 scenario, as described in the text.

Parameter	Scenario	Projected 95\% CL interval
$f_{a 3} \cos \left(\phi_{a 3}\right) \times 10^{4}$	S1, only on-shell	$[-1.8,1.8]$
$f_{a 3} \cos \left(\phi_{a 3}\right) \times 10^{4}$	S1, on-shell and off-shell	$[-1.6,1.6]$
$\Gamma_{\mathrm{H}}(\mathrm{MeV})$	S 1	$[2.0,6.1]$
$\Gamma_{\mathrm{H}}(\mathrm{MeV})$	S 2	$[2.0,6.0]$

Anomalous ZZH/ yZH couplings |L
 3 -parameter fit

$\mathcal{L}_{Z Z H}=M_{Z}^{2}\left(\frac{1}{\mathrm{v}}+\frac{a_{Z}}{\Lambda}\right) Z_{\mu} Z^{\mu} H+\frac{b_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu} H+\frac{\tilde{b}_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \widetilde{\hat{Z}}^{\mu \nu} H_{(\Lambda=1 \mathrm{TeV})}$

$$
\gamma / \kappa \lesssim 0.022
$$

5-parameter tıt

$$
Z H+Z Z \text { at } 250+500 \mathrm{GeV} \text { with } H 20
$$

\because CP-violation in a combination of three decays

$$
h_{1} \rightarrow Z Z(+) h_{2} \rightarrow Z Z(+) h_{2} \rightarrow h_{1} Z \quad \text { Combinations of three decays }
$$

Many other combinations

$$
\begin{array}{l|l|l}
h_{1} \rightarrow Z Z \Leftarrow C P\left(h_{1}\right)=1 & h_{3} \rightarrow h_{2} h_{1} \Rightarrow C P\left(h_{3}\right)=C P\left(h_{2}\right)
\end{array}
$$

Decay	CP eigenstates	Model
$h_{3} \rightarrow h_{2} Z$	$C P\left(h_{3}\right)=-C P\left(h_{2}\right)$	None

CP-violation in a combination of three decays

But if something is found, a more detail studied is needed

Problem 1 - scalar is found in ZZ with very low rates - it could be a pseudoscalar plus in the 2HDM, in the exact alignment limit:

$$
\Gamma(A \rightarrow Z Z) \sim \Gamma(H \rightarrow Z Z)
$$

Problem 2 - with extra vector like quarks the rates could be higher even for a pseudoscalar

ARHRIB, BENBRIK, EL FALAKI, SAMPAIO, RS, TO APPEAR IN PRD (1809.04805)
Compare variables that probe CP-violation with the set of processes that together could signal CP-violation.

$$
h_{125} \rightarrow Z Z \quad \text { MEASURED }
$$

The first variable is just the phase

$$
\lambda_{5}=\left|\lambda_{5}\right| e^{i \phi\left(\lambda_{5}\right)}
$$

MORE YELLOW MEANS LARGER CP-VIOLATING PHASE

There is no correlation between the high rates of CP-violating decays and the CP-violating phase.

Variables to probe CP-violation

Variable involving Higgs couplings to gauge bosons

$$
\xi_{V}=27 \prod_{i=1}^{3} c^{2}\left(H_{i} V V\right) \quad c\left(H_{i} V V\right)=R_{i 1} C_{\beta}+R_{i 2} S_{\beta} \quad\left[\begin{array}{cc}
\left.R_{i j}\right]=\left(\begin{array}{cc}
c_{1} c_{2} & s_{1} c_{2} \\
-\left(c_{1} s_{2} s_{3}+s_{1} c_{3}\right) & c_{1} c_{3}-s_{1} s_{2} s_{3} \\
-c_{1} s_{2} c_{3}+s_{1} s_{3} & -\left(c_{1} s_{3}+s_{1} s_{2} c_{3}\right.
\end{array} c_{2} c_{3}\right.
\end{array}\right)
$$

MENDEZ, POMAROL, PLB272 (1991) 313.
$c(H i V V)$ is the coupling relative to the SM Higgs coupling: variables are normalised

$$
0<\xi_{V} \leq 1
$$

which is related with the simplest CP-odd invariant that can be build from the mass matrix

$$
J_{1}^{2}=\left[\left(m_{2}^{2}-m_{1}^{2}\right)\left(m_{3}^{2}-m_{1}^{2}\right)\left(m_{3}^{2}-m_{2}^{2}\right)\right] \frac{\xi_{V}}{27}
$$

LAVOURA, SILVA, PRD50 (1994) 4619.
Note that in the CP-conserving 2HDM,

$$
c(A V V)=0 \Longrightarrow \xi_{V}=0
$$

$C P$-violating parameter ξV as a function of $\tan \beta$ for all types.

Lighter points have passed all constraints except EDM, darker points have passed all constraints.

Type I: no special regions regarding the allowed values of $\tan \beta$. Also, the maximum value for ξV is around 0.2 almost independently of $\tan \beta$.

Type II: , after EDM, we end with two almost straight lines (one for $\tan \beta \approx 1$ and the other for ξ_{v} ≈ 0), as well as a region around $\tan \beta \approx 3$ with ξ_{v} up to 0.6 .

Points with significant CP-violation can occur for $\tan \beta \approx 1$ in the alignment limit or for large tan β for the wrong sign limit.

$$
\kappa_{D} \kappa_{W}<0 \quad \text { or } \quad \kappa_{U} \kappa_{W}<0
$$

The situation in Flipped is similar to Type II, with a maximum value of $\xi_{V} \sim 0.2$.
Ferreira, Gunion, Haber, RS, PRD89 (2014)

Let us consider now the Yukawa couplings. As an example consider a Type II up-quark coupling

$$
c\left(H_{i} \bar{t} t\right)=\frac{1}{s_{\beta}}\left(R_{i 2}-i \gamma_{5} R_{i 3}\right)
$$

we defined the normalised variables

$$
\gamma_{t}=1024 \prod_{i=1}^{3}\left(R_{i 2} R_{i 3}\right)^{2} \quad \gamma_{b}=1024 \prod_{i=1}^{3}\left(R_{i 1} R_{i 3}\right)^{2}
$$

Similar variables can be defined for the sum.

$$
\begin{array}{ll}
h_{2} \rightarrow h_{1} Z & C P\left(h_{2}\right)=-C P\left(h_{1}\right) \\
h_{3} \rightarrow h_{1} Z & C P\left(h_{3}\right)=-C P\left(h_{1}\right) \\
h_{3} \rightarrow h_{2} Z & C P\left(h_{3}\right)=-C P\left(h_{2}\right)
\end{array}
$$

> Is there CP-violation here? Now let us take these three processes and build a nice Feynman diagram

With one Z off-shell the most general $Z Z Z$ vertex has a CP-odd term of the form

$$
i \Gamma_{\mu \alpha \beta}=-e \frac{p_{1}^{2}-m_{Z}^{2}}{m_{Z}^{2}} f_{4}^{Z}\left(g_{\mu \alpha} p_{2, \beta}+g_{\mu \beta} p_{3, \alpha}\right)+\ldots
$$

For a model with only this type of diagrams
DO NOT MISS
PEDRO FERREIRA'S CP IN THE
DARK tomorrow at 10.45

In the C2HDM there are two more types of diagrams

GRZADKOWSKI, OGREID, OSLAND, JHEP 05 (2016) 025.
BÉLUSCA-MAÏTO, FALKOWSKI, FONTES, ROMÃO, SILVA, JHEP 04 (2018) 002
The typical maximal value for f_{4} seems to be below 10-4.
Present measurements by ATLAS and CMS - still two orders of magnitude away

CMS COLLABORATION, EPJC78 (2018) 165

ATLAS COLLABORATION, PRD97 (2018) 032005.

$$
\begin{aligned}
& -1.2 \times 10^{-3}<f_{4}^{Z}<1.0 \times 10^{-3} \\
& -1.5 \times 10^{-3}<f_{4}^{Z}<1.5 \times 10^{-3}
\end{aligned}
$$

How far can we go in constraining f_{4} ?

TABLE III. Simultaneous limits $\left(10^{-3}\right)$ on anomalous couplings in $Z Z$ production at LHC at $\sqrt{s}=13 \mathrm{TeV}$ for various luminosity from

param / \mathscr{L}	$35.9 \mathrm{fb}^{-1}$	$150 \mathrm{fb}^{-1}$	$300 \mathrm{fb}^{-1}$	$1000 \mathrm{fb}^{-1}$
f_{4}^{γ}	${ }_{-1.11}^{+1.12}$	${ }_{-0.78}^{+0.78}$	${ }_{-0.66}^{+0.66}$	${ }_{-0.50}^{+0.50}$
f_{5}^{γ}	${ }_{-1.13}^{+1.10}$	${ }_{-0.80}^{+0.77}$	${ }_{-0.67}^{+0.65}$	${ }_{-0.50}^{+0.47}$
f_{4}^{Z}	${ }_{-0.95}^{+0.95}$	${ }_{-0.67}^{+0.67}$	${ }_{-0.57}^{+0.57}$	${ }_{-0.41}^{+0.41}$
f_{5}^{Z}	${ }_{-0.97}^{+0.95}$	${ }_{-0.68}^{+0.67}$	${ }_{-0.58}^{+0.56}$	${ }_{-0.42}^{+0.41}$

CP-violation in the Yukawa couplings

$$
\begin{aligned}
& Y_{C 2 H D M}^{T y p e I I}=a_{d}+i \gamma_{5} b_{d}=c_{2} Y_{2 H D M}^{T y p e I I}-i \gamma_{5} s_{2} t_{\beta} \\
& Y_{C 2 H D M}^{T y p e I I}=a_{u}+i \gamma_{5} b_{u}=c_{2} Y_{2 H D M}^{T y p e I I}-i \gamma_{5} \frac{s_{2}}{t_{\beta}} \quad \text { bot }
\end{aligned}
$$ bottom, tau

Bounds on the Yukawa couplings

With the most relevant experimental and theoretical constraints

Figure 1. C2HDM Type I: for sample 1 (dark) and sample 2 (light) left: mixing angles α_{1} and α_{2} of the C2HDM mixing matrix R only including scenarios where $H_{1}=h_{125}$; right: Yukawa couplings.

$$
\begin{gathered}
g_{C 2 H D M}^{h V V}=\cos \alpha_{2} \cos \left(\beta-\alpha_{1}\right) g_{S M}^{h V V} \\
g_{C 2 H D M}^{h u u}=\left(\cos \alpha_{2} \frac{\sin \alpha_{1}}{\sin \beta}-i \frac{\sin \alpha_{2}}{\tan \beta} \gamma_{5}\right) g_{S M}^{h f f}
\end{gathered}
$$

$$
\mu_{V V}>0.79 \Rightarrow \cos \alpha_{2}>0.89 \Rightarrow \alpha_{2}<27^{\circ}
$$

$$
\begin{gathered}
{\left[\begin{array}{cc}
\cos 20^{\circ}=0.94 & \sin 20^{\circ}=0.34 \\
\tan \beta>1
\end{array}\right.} \\
g_{C 2 H D M}^{h b b}=\left(\cos \alpha_{2} \frac{\cos \alpha_{1}}{\cos \beta}-i \sin \alpha_{2} \tan \beta \gamma_{5}\right) g_{S M}^{h f f}
\end{gathered}
$$

EDM

Figure 3. C2HDM Type II, $h_{125}=H_{1}$: Yukawa couplings to bottom quarks and tau leptons (left)

EDM constraints completely kill large pseudoscalar components in Type II. Not true in Flipped and Lepton Specific.

CP-odd coupling proportional to $\sin \alpha_{2} \tan \beta$

EDMs act differently in the different Yukawa versions of the model. Cancellations between diagrams occur.

The relevant quantity for the pseudoscalar component is

AbRAMOWICZ EAL, 1307.5288
CLICDP, SICKING, NPPP, 273-275, 801 (2016)

Parameter	Relative precision $[76,77]$		
	350 GeV	+1.4 TeV	+3.0 TeV
	$500 \mathrm{fb}^{-1}$	$+1.5 \mathrm{ab}^{-1}$	$+2.0 \mathrm{ab}^{-1}$
$\kappa_{H Z Z}$	0.43%	0.31%	0.23%
$\kappa_{H W W}$	1.5%	0.15%	0.11%
$\kappa_{H b b}$	1.7%	0.33%	0.21%
$\kappa_{H c c}$	3.1%	1.1%	0.75%
$\kappa_{H t t}$	-	4.0%	4.0%
$\kappa_{H \tau \tau}$	3.4%	1.3%	$<1.3 \%$
$\kappa_{H \mu \mu}$	-	14%	5.5%
$\kappa_{H g g}$	3.6%	0.76%	0.54%
$\kappa_{H \gamma \gamma}$	-	5.6%	$<5.6 \%$

Predicted precision for CLIC

$$
\begin{gathered}
\Psi_{i}^{C 2 H D M} \quad \text { C2HDM - pseudoscalar component. } \\
\text { LHC today } \\
\Psi_{i}^{C 2 H D M}=R_{i 3}^{2} \frac{\frac{\text { C2HDM II C2HDM I }}{10 \%} 20 \%}{} \\
\text { CLIC@350GeV (500/fb) } \\
\Psi_{i}^{C 2 H D M} \leq 0.85 \% \text { from } \kappa_{Z Z}
\end{gathered}
$$

If no new physics is discovered and the measured values are in agreement with the SM predictions, the pseudoscalar components (from the C2HDM) will be below the \% level.

Not taking into account radiative corrections

How will it look in the future?

Using the bounds for κ_{i} the Yukawa allowed circle looks like

$$
\text { Unitarity } \Rightarrow \kappa_{Z Z, W W}^{2}+\Psi_{i}^{C 2 H D M} \leq 1 \quad \Psi_{i}^{C 2 H D M}=R_{i 3}^{2}
$$

The deviations can be written in terms of the rotation matrix from gauge to mass eigenstates.

$$
\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right)=R\left(\begin{array}{c}
\rho \\
\eta \\
\rho_{S}
\end{array}\right) \quad R=\left[R_{i j}\right]=\left(\begin{array}{ccc}
c_{1} c_{2} & s_{1} c_{2} & s_{2} \\
-\left(c_{1} s_{2} s_{3}+s_{1} c_{3}\right) & c_{1} c_{3}-s_{1} s_{2} s_{3} & c_{2} s_{3} \\
-c_{1} s_{2} c_{3}+s_{1} s_{3} & -\left(c_{1} s_{3}+s_{1} s_{2} c_{3}\right) & c_{2} c_{3}
\end{array}\right)
$$

$\because C P$-violation - a strange scenario

	Type I	Type II	Lepton Specific	Flipped
Up	$\frac{R_{12}}{s_{\beta}}-i c_{\beta} \frac{R_{13}}{s_{\beta}}$	$\frac{R_{12}}{s_{\beta}}-i c_{\beta} \frac{R_{13}}{s_{\beta}}$	$\frac{R_{12}}{s_{\beta}}-i c_{\beta} \frac{R_{13}}{s_{\beta}}$	$\frac{R_{12}}{s_{\beta}}-i c_{\beta} \frac{R_{13}}{s_{\beta}}$
Down	$\frac{R_{12}}{s_{\beta}}+i c_{\beta} \frac{R_{13}}{s_{\beta}}$	$\frac{R_{11}}{c_{\beta}}-i s_{\beta} \frac{R_{13}}{c_{\beta}}$	$\frac{R_{12}}{s_{\beta}}+i c_{\beta} \frac{R_{13}}{s_{\beta}}$	$\frac{R_{11}}{c_{\beta}}-i s_{\beta} \frac{R_{13}}{c_{\beta}}$
Leptons	$\frac{R_{12}}{s_{\beta}}+i c_{\beta} \frac{R_{13}}{s_{\beta}}$	$\frac{R_{11}}{c_{\beta}}-i s_{\beta} \frac{R_{13}}{c_{\beta}}$	$\frac{R_{11}}{c_{\beta}}-i s_{\beta} \frac{R_{13}}{c_{\beta}}$	$\frac{R_{12}}{s_{\beta}}+i c_{\beta} \frac{R_{13}}{s_{\beta}}$

There is only one way to make the pseudoscalar component to vanish

$$
c_{1}=0 \Longrightarrow R_{11}=0
$$

and for instance in type II

$$
c_{1}=0 \Longrightarrow R_{11}=0 \Longrightarrow a_{D}=a_{L}=0
$$

and
A scalar that is also a pseudoscalar

$$
\begin{array}{lll}
b_{D}=b_{L}=-s_{2} t_{\beta} & b_{D}^{2}=b_{L}^{2} \approx 1 & 0+i \gamma_{5} b_{D} \\
b_{U}=s_{2} / t_{\beta} & b_{U} \approx 0 & \text { for large } \tan \beta
\end{array}
$$

Possible for all Yukawa types except Type I

Can be achieved

$$
a_{i}+i \gamma_{5} b_{i}(i=U, D, L)
$$

and

$$
a_{U}^{2}=\frac{c_{2}^{2}}{s_{\beta}^{2}} ; \quad b_{U}^{2}=\frac{s_{2}^{2}}{t_{\beta}^{2}} ; \quad C^{2}=s_{\beta}^{2} c_{2}^{2}
$$

Type I $\quad a_{U}=a_{D}=a_{L}=\frac{c_{2}}{s_{\beta}} \quad b_{U}=-b_{D}=-b_{L}=-\frac{s_{2}}{t_{\beta}}$
Type II

$$
a_{D}=a_{L}=0 \quad b_{D}=b_{L}=-s_{2} t_{\beta}
$$

Type F

$$
a_{D}=0
$$

$$
b_{D}=-s_{2} t_{\beta}
$$

Type LS
$a_{L}=0$

$$
b_{L}=-s_{2} t_{\beta}
$$

Even if the CP-violating parameter is small, large $\tan \beta$ can lead to large values of b.

Which means CP-violation in a strange way

Find two particles of the same mass one decaying to tops as CP-even

$$
h_{2}=H ; p p \rightarrow H t \bar{t}
$$

and the other decaying to taus as CP-odd

$$
h_{2}=A \rightarrow \tau^{+} \tau^{-}
$$

Probing one Yukawa coupling is not enough!
$Y_{C 2 H D M}=a_{F}+i \gamma_{5} b_{F}$

$$
b_{U} \approx 0 ; a_{D} \approx 0
$$

A Type II model where H_{2} is the SMlike Higgs.

Type II	BP2m	BP2c	BP2w
$m_{H_{1}}$	94.187	83.37	84.883
$m_{H_{2}}$	125.09	125.09	125.09
$m_{H^{ \pm}}$	586.27	591.56	612.87
$\operatorname{Re}\left(m_{12}^{2}\right)$	24017	7658	46784
α_{1}	-0.1468	-0.14658	-0.089676
α_{2}	-0.75242	-0.35712	-1.0694
α_{3}	-0.2022	-0.10965	-0.21042
$\tan \beta$	7.1503	6.5517	6.88
$m_{H_{3}}$	592.81	604.05	649.7
$c_{b}^{e}=c_{\tau}^{e}$	0.0543	0.7113	-0.6594
$c_{b}^{o}=c_{\tau}^{o}$	1.0483	0.6717	0.6907
μ_{V} / μ_{F}	0.899	0.959	0.837
$\mu_{V V}$	0.976	1.056	1.122
$\mu_{\gamma \gamma}$	0.852	0.935	0.959
$\mu_{\tau \tau}$	1.108	1.013	1.084
$\mu_{b b}$	1.101	1.012	1.069

The LS and F benchmark points

LS	BPLSm	BPLSc	BPLSw	Flipped	BPFm	BPFc	BPFw
$m_{H_{1}}$	125.09	125.09	91.619	$m_{H_{1}}$	125.09	125.09	125.09
$m_{H_{2}}$	138.72	162.89	125.09	$m_{H_{2}}$	154.36	236.35	148.75
$m_{H^{ \pm}}$	180.37	163.40	199.29	$m_{H^{ \pm}}$	602.76	589.29	585.35
$\operatorname{Re}\left(m_{12}^{2}\right)$	2638	2311	1651	$\operatorname{Re}\left(m_{12}^{2}\right)$	10277	8153	42083
α_{1}	-1.5665	1.5352	0.0110	α_{1}	-1.5708	1.5277	-1.4772
α_{2}	0.0652	-0.0380	0.7467	α_{2}	-0.0495	-0.0498	0.0842
α_{3}	-1.3476	1.2597	0.0893	α_{3}	0.7753	0.4790	-1.3981
$\tan \beta$	15.275	17.836	9.870	\tan	18.935	14.535	8.475
$m_{H_{3}}$	206.49	210.64	177.52	$m_{H_{3}}$	611.27	595.89	609.82
c_{T}^{e}	-0.0661	0.6346	-0.7093	c_{b}^{e}	-0.0003	0.6269	-0.7946
c_{τ}^{o}	0.9946	0.6780	-0.6460	c_{b}^{o}	-0.9369	0.7239	0.7130
μ_{V} / μ_{F}	0.980	0.986	0.954	μ_{V} / μ_{F}		0.864	0.844
$\mu_{V V}$	1.014	1.029	1.000	$\mu_{V V}$	1.154	1.091	Q 998
$\mu_{\gamma \gamma}$	0.945	1.018	0.879	$\mu_{\gamma \gamma}$	1.027	0.986	0.874
$\mu_{\tau \tau}$	1.007	0.880	0.943	$\mu_{\tau \tau}$	1.148	1.084	1.039
$\mu_{b b}$	1.013	1020	1.025	$\mu_{b b}$	1.001	0.992	1.170

Almost CP -odd in the coupling to taus. Almost CPeven in the coupling to quarks.

$$
\begin{aligned}
& h_{1}=A \rightarrow \tau^{+} \tau^{-} \\
& h_{1}=H ; p p \rightarrow H t \bar{t}
\end{aligned}
$$

Same but with a CP-odd coupling to b quarks.

$$
\begin{aligned}
& h_{1}=A \rightarrow \bar{b} b \\
& h_{1}=H ; p p \rightarrow H t \bar{t}
\end{aligned}
$$

The other scenarios are for maximal $c^{*} c^{e}$ with all possible signs combination.

$$
p p \rightarrow h \rightarrow \tau^{+} \tau^{-}
$$

BERGE, BERNREUTHER, ZIETHE PRL 100 (2008) 171605 BERGE, BERNREUTHER, NIEPELT, SPIESBERGER, PRD84 (2011) 116003

- A measurement of the angle

$$
\tan \Phi_{\tau}=\frac{b_{L}}{a_{L}} \quad \begin{gathered}
\text { can be performed } \\
\text { with the accuracies }
\end{gathered} \quad \begin{aligned}
& \Delta \Phi_{\tau}=15^{\circ} \Leftarrow 150 \mathrm{fb}^{-1} \\
& \Delta \Phi_{\tau}=9^{\circ} \Leftarrow 500 \mathrm{fb}^{-1}
\end{aligned}
$$

Numbers from: Berge, Bernieuther, Kirchner PRD92 (2015) 096012

$$
\tan \Phi_{\tau}=-\frac{\sin \beta}{\cos \alpha_{1}} \tan \alpha_{2} \Rightarrow \tan \alpha_{2}=-\frac{\cos \alpha_{1}}{\sin \beta} \tan \Phi_{\tau}
$$

- It is not a direct measurement of the $C P$-violating angle α_{2}.

CP from direct measurements at the LHC (tth)

$$
p p \rightarrow h \bar{t} t
$$

GUNION, HE, PRL77 (1996) 5172

BOUDJEMA, GODBOLE, GUADAGNOLI, MOHAN, PRD92 (2015) 015019 AMOR DOS SANTOS EAL PRD96 (2017) 013004

$$
\mathscr{L}_{H \bar{t} t}=-\frac{y_{t}}{\sqrt{2}} \bar{t}\left(a+i b \gamma_{5}\right) t h
$$

Signal: t† fully leptonic (or semileptonic) and $\mathrm{H} \rightarrow \mathrm{bb}$

Background: most relevant is the irreducible t† background

Probing the nature of h in tth

The spin averaged cross section of tth productions has terms proportional to $a^{2}+b^{2}$ and to $a^{2}-b^{2}$. Terms $a^{2}-b^{2}$ are proportional to the top quark mass. We can define

$$
\alpha\left[\mathcal{O}_{C P}\right] \equiv \frac{\int \mathcal{O}_{C P}\{d \sigma(p p \rightarrow t t h) / d P S\} d P S}{\int\{d \sigma(p p \rightarrow t t h) / d P S\} d P S} \quad \mathscr{L}_{H \bar{t}}=-\frac{y_{t}}{\sqrt{2}} \overline{\tilde{t}\left(a+i b r_{5}\right) t h}
$$

where the operator is chosen to maximise the sensitivity of α to the $a^{2}-b^{2}$ term. The best operator from the ones proposed is

$$
b_{4}=\frac{p_{t}^{z} p_{\bar{t}}^{z}}{p_{t} p_{\bar{t}}}
$$

Another option is to use angular distributions for which the CP-even and the CP-odd terms behave differently.

GUNION, HE, PRL77 (1996) 5172
AMOR DOS SANTOS EAL PRD96 (2017) 013004

$$
\begin{gathered}
\mathscr{L}_{H \bar{t} t}=\kappa y_{t} \bar{t}\left(\cos \alpha+i \sin \alpha \gamma_{5}\right) t h \\
\cos \alpha=1 \quad \text { pure scalar }
\end{gathered}
$$

So, what is bound on the pseudoscalar component of the tth coupling at the end of
the high luminosity LHC?

For $\cos \alpha=0.7$ the limit on α_{2} is 46° for $\tan \beta=1$ while for $\cos \alpha=0.9$ is 26° - close to what we have today from indirect measurements.
The difference is that the bound is now
 directly imposed on the Yukawa coupling.

many other proposals...

Hankele, Klamke, Zeppenfeld, 0605117

$$
p p \rightarrow j j h
$$

Using the azimuthal angle between the two jets.

Corresponds to the C2HDM in the limit

$$
\cos \left(\beta-\alpha_{1}\right)=1 ; \tan \beta=1
$$

In this case

$$
\begin{gathered}
\Phi_{\tau}=\alpha_{2} \\
\Delta \Phi_{\tau}=40^{o} \Leftarrow 50 \mathrm{fb}^{-1} \\
\Delta \Phi_{\tau}=25^{o} \Leftarrow 300 \mathrm{fb}^{-1}
\end{gathered}
$$

Signal rates - $h_{125}\left(h_{3}\right.$ or $\left.h_{2}\right)$ to $H_{\downarrow} H_{\downarrow}$ for all types

Decays of h_{125} (just h_{3}) to $H_{\downarrow} H_{\downarrow}$ for all types

In the case of the heaviest being the 125 GeV Higgs, signal rates can still be large but only for

Type I and LS due to a combination of the bound on the charged Higgs mass and STU.

Decays to $h_{125} h_{125}$ in Types I and II

Left - Signal rates for the production of H_{\downarrow} (upper) and H_{\uparrow} (lower)
decaying to $h_{125} h_{125}$ for 13
TeV as a function of m_{H}.

Right - Same as left with the extra conditions

$$
\begin{gathered}
\sigma\left(p p \rightarrow H_{\downarrow} \rightarrow Z Z\right)<1 \mathrm{fb} \\
\sigma\left(p p \rightarrow H_{\uparrow} \rightarrow Z Z\right)<1 \mathrm{fb}
\end{gathered}
$$

Rates can be above the pb level but are at most 10 fb if we restrict the decays to ZZ to be below 1 fb . Reference cross section for the SM di-Higgs production is about 30 fb .

Conclusions

O The closer we get to the situation where the Higgs couplings to fermions and gauge bosons are very SM-like, the harder will be to probe CP-violation using decays to Z bosons, if a new scalar is found.
(Anomalous triple Z couplings would be an important measurement in the future if we could increase precision.
©. There is still a lot to do in the Yukawa sector...
(3) ... and if not at the LHC, perhaps at the future ILC.

There are still scalars to be discovered with very large production rates.

The end

Boudjema, Godbole, Guadagnoli, Mohan 2015
Azimuthal difference between I+ in the \dagger rest frame and 1 - in the tbar rest frame

Berge, Bernreuther, Kirchner Prd92 (2015) 096012

Illustration of $\varphi_{C P}^{*}$ in the ρ decay-plane method as defined in (14) for $p p \rightarrow h^{0} \rightarrow \tau^{-} \tau^{+} \rightarrow \rho^{-} \rho^{+}+2 v$.

Direct probing at the LHC

- For the C2HDM we need three independent measurements

$$
\tan \phi_{i}=\frac{b_{i}}{a_{i}} ; \quad i=U, D, L
$$

- Just one measurement for type $I(U=D=L)$, two for the other three types. At the moment there are studies for tth and T Th.
- If $\Phi_{\mathrm{t}} \neq \Phi_{\mathrm{T}}$ type I and $\mathrm{F}(\mathrm{Y})$ are excluded.
- To probe model $F(Y)$ we need the bbh vertex.

What if the 125 GeV reveals different CP behaviour in two decay channels?

The SM-like Higgs coupling to $Z Z(W W)$ relative to the corresponding SM coupling is

$$
\kappa_{C 2 H D M}^{h_{125} W W}=c_{2} \sin (\beta-\alpha)
$$

and c_{2} cannot be far from 1. But a_{2} is the $C P$-violating angle and therefore it should be small. However, the CP-odd component has an extra $\tan \beta$ factor for down quarks and leptons, but not for the up quarks

$$
\begin{aligned}
& Y_{C 2 H D M}^{T y p e I I}=c_{2} Y_{2 H D M}^{T y p e I I}-i \gamma_{5} s_{2} t_{\beta} \quad \text { bottom, tau } \\
& Y_{C 2 H D M}^{T y p e I I}=c_{2} Y_{2 H D M}^{T y p e I I}-i \gamma_{5} \frac{s_{2}}{t_{\beta}} \quad \text { top }
\end{aligned}
$$

Thus, the SM-like Higgs couplings to the tops could be mainly CP-even while couplings to the bottoms and taus could be mainly CP-odd.

Combinatorial background plays a very important role.

