HPNP 2019 @ Osaka 2019 Feb 21 (18 -22)

Hierarchy problem

- from bottom-up and/or top-down -

Satoshi Iso (KEK & Sokendai)

"and" = a hope to connect these two approaches

"or" = they are not yet connected.

Hierarchy "problems" are ubiquitous in nature.
Particle physics, Cosmology
Condensed matter physics,
Fluid dynamics, Astrophysics,

Hierarchy of scales in fluid: "effective theory" approach

徳島県立脇町高校科学同好会 http://wakimachi-hs.tokushima-ec. ed.jp/joapls1un-282/

Karman vortices in various scales

Behind Cheju island 済州島 (ひまわり)

Jupiter (NASA Voyager2)

Navier-Stokes eq. is described by a single dimensionless parameter = R.

$$\frac{D\mathbf{u}}{Dt} = -\frac{1}{\rho}\nabla p + \nu\Delta \mathbf{u} \quad \Longrightarrow \quad \frac{D\tilde{\mathbf{u}}}{D\tilde{t}} = -\tilde{\nabla}\tilde{p} + \frac{1}{R}\tilde{\Delta}\tilde{\mathbf{u}} \qquad \qquad \frac{R = LU/\nu}{\text{Reynolds number}}$$

But Cheju Karman vortices cannot be explained if we use the molecular viscosity v.

 ν (Cheju) ~ 10⁸ ν (micro)

Eddy viscosity molecular viscosity

Viscosity is scale-dependent.

The framework of LEET can be determined by the IR physics, e.g symmetry (Navier-Stokes eq., Chiral Lagrangian) renormalizability (Standard Model)
 But, the parameters in the EFT are obtained by integrating out

UV physics.

This is nothing but the idea of **Renormalization Group**.

\rightarrow UV determines IR parameters through RG.

Hierarchy of scales in orbital motions: "geometric" approach

Radius of orbital motions Earth r=10000000 km Pluto r=500000000 km ISS r=6400+400 km

Suppose that we were always faced to the sun. How could we understand why the distance is fixed at r=10⁷ km? why it is different from r on Pluto? why the sun is not falling down to the earth ?

In this setup, a classical solution (configuration) is first determined by the initial condition first, and then we can calculate its effective potential on each planet.
 → Thus, effective potentials are different on Earth and on Pluto.
 Phenomena on planets, e.g., Coriolis force, is solution-dependent.
 Solution comes first, Effective potential next!
 "IR" geometry determines effective potential in a top-down way.

4

Naturalness problem = Hierarchy of various scales in nature

In this talk, I will focus on the hierarchy of M_{EW} against M_{Planck} from bottom-up (part 1) and from top-down (part 2)

Especially I will pay particular attention to the vev of Higgs <H> itself NOT a parameter in the Higgs potential

Note that <H> is a solution to the EOM of Higgs field.

Part 1 Bottom-up approach to the Higgs hierarchy problem

- LHC and Classical conformal models –

N.Okada, Y.Orikasa, SI PLB(2009) & PRD(2009) Y.Orikasa, SI PTEP(2012) M.Hashimoto , Y.Orikasa, SI PRD(2013) & PRD(2014)

- QCD induced EW phase transition -

K. Kohri & K. Shimada, SI PRD(2015) & PRD (2016) P. Serpico, K. Shimada, SI PRL (2017) We have now many experimental data about the Higgs sector including Higgs mass, Higgs VEV, quartic coupling, Yukawa couplings
 → Rough picture of the Higgs potential: (at least) 3 important points

- 1 Higgs VEV v= 246 GeV \rightarrow SM (present universe)
- 2 UV scale $M_{UV} > 10^{10} \text{ GeV}$ or M_{Planck} \rightarrow gravity, string theory & origin of Higgs
- 3 h=0 (origin) \rightarrow history of the early universe

The behaviors around 2 and 3 control the early universe, but they are only indirectly accessible by using RG and theoretical biases.

2 important lessons from LHC for the Higgs potential

(1) mass = 125 GeV

$$V=-\mu^2|H|^2+\lambda(|H|^2)^2$$

 "EW" physics may be directly related to Planck scale physics without intermediate scales in between.
 Froggatt Nielsen (96) M.Shaposhnikov (07)

(2) No deviations from SM / no TeV SUSY? \rightarrow Naturalness

If μ =0 at UV scale, it will be never radiatively generated in the IR V if there are no intermediate scales strongly coupled to the SM.

- Wetterich (94) Bardeen (95)
- \rightarrow Classically conformal models (scalar potential is radiatively generated.)

flat potential V(H)=0 at M_{Pl}

Scalar fields often appear as **moduli** with flat potential in string theory.

From UV to IR: Naturalness problem = how can we interpolate ?

"UV physics" either Quantum scale invariance in QG or String theory (flat moduli in non-susy vacua)

Start from a flat potential V(H)=0 at M_{Pl} , or M_{string}

No intermediate scales between UV and IR

Coleman-Weinberg mechanism

Radiatively generate

"IR Physics": SM + (inevitably) an additional sector because CW mechanism requires that the beta-function of the quartic scalar coupling must be positive $\beta_{\phi} > 0$ (Within the SM, $\beta_{\text{Higgs}} < 0$ and CW mechanism does not work.)

Several possibilities of extensions:Classically conformality to solve naturalness(1) SM + scalarsFoot, Kobakhidze, Volkas (07), Meissner,Nicolai (07)(2) SM + gauge sectorB-L: SI, Okada, Orikasa (09)L-R symmetric: Holthausen, Lindner, Schmidt (10)SU(2)_{X:} Hambye Strumia (13),(3) SM + strongly couple sectorHur, P. Ko (11), Holthausen, Kubo, Kim, Kindner (13)

In the following, we focus on a specific model

"classically conformal (B-L)-extension of SM"

(1) Free from naturalness problem (no intermediate scales)
 B-L breaking at 10 TeV by CW mechanism → triggers EWSB at 100 GeV Everything occurs radiatively.

(2) Minimal extension of SM & Phenomenologically viable

v oscillation, (resonant) leptogenesis,

DM candidate (e.g. right-handed v with Z_2)

IR physics		B-L	sector
• l	U(1) _{B-L} gauge	Ζ'	necessary for $\beta_{\phi} > 0$
	SM singlet scalar	φ	CW mechanism
• F	Right-handed v	v _R ⁱ i=1~3	necessary for anomaly cancellation

Scalar potential:

Some properties of the potential

(1) Negative small value of the scalar mixing λ_{mix} can be radiatively induced from the flat potential $\lambda_{mix} = 0$ @ M_{Pl}.

$$\frac{d\lambda_{mix}}{dt} = \frac{1}{16\pi^2} \left(6g_{B-L}^2 g_{mix}^2 + \lambda_{mix}(\cdots) \right) \longrightarrow \lambda_{mix} \sim -g_{B-L}^2 g_{mix}^2$$

$$\xrightarrow{0.0001}_{0.0002} \left(\lambda_{mix} - \lambda_3 - running of \lambda_{mix} - \lambda_3 - running of \lambda_{mix} - \lambda_4 - \mu (GeV) - \mu (GeV)$$

(2) The condition $\beta_{\phi} > 0$ for CW mechanism in B-L sector D~41 $B \approx \frac{c_0^4}{8\pi^2} \left(3(2g)^4 - 2\text{Tr}\left(\frac{Y}{\sqrt{2}}\right)^4 - D\,\lambda_{\text{mix}}^2 \right) \longrightarrow m_{Z'}^4 > \frac{2\text{Tr}\,m_N^4}{2} + \frac{D\,m_h^4}{2}$ $B=2\lambda$ $c_0 \sim 1$ $m_{Z'} = 2gM$ $m_{N_i} = Y_i M / \sqrt{2}$ $m_h \approx \sqrt{|\lambda_{\text{mix}}|} M$ Right-handed neutrinos are lighter than $M_{7'}$, typically TeV or lighter. (3) B-L scalar (pNG boson) is very light. $m_{\phi} = \sqrt{BM}$ $m_{\phi} < 470 \; {\rm GeV}$ 4 Vacuum energy at the origin is given by Z' mass shallow $V_0 = B M^4 / 16 < (3/128 \pi^2) m_{z'}^4 << M^4$ V_0 V_0 becomes smaller if m_{ϕ} becomes lighter. Μ (5) $M_{7'}$ is typically 5-10 TeV. LEP 0.0150 exclude LHC 0.0100 0.0070 ILC (W)⁷⁻⁸x $\langle H \rangle = \sqrt{\frac{-\lambda_{mix}}{\lambda_{II}}} M_{B-L}$ reach model 0.0030 prediction 0.0020 0.0015 0.0010 $m_{Z'} = 2gM$ 10 0 2 4 6 8 mz [TeV]

"Classically conformal B-L extension of SM" is a minimal & phenomenologically viable model

In order to verify (or falsify) the model Look for Z': 5-10 TeV but α_{B-L} is relatively small ϕ : difficult to find, too light and weakly coupled v_R : TeV scale (resonant) leptogenesis But it is difficult to distinguish this kind of models from others.

After primordial inflation, universe is preheated up to high T>> T_c .

valley

After primordial inflation, universe is preheated up to high T>> T_c .

Supercooling of (B-L)+EW \rightarrow PT much below T_c

Bubble of true vacuum is created by tunneling.

Percolation of true vacuum

Guth Weinberg (82)

Bubbles of true vacuum are created by tunneling

T_p : percolation temperature

Universe is occupied with true vacuum bubbles

Note that de Sitter fluctuation $\sim T_{\rm GH} = {\cal H}/2\pi$ is negligible at 100 MeV.

$$V_0^{1/4} \sim m_{Z'}$$

When temperature decreases down to 100 MeV at (ϕ =0, h=0)

$$\langle \bar{q}_i q_i \rangle \sim \Lambda_{\rm QCD}^3$$

Interplay of [QCD χ SB, confinement, B-L, EW]:

similar to the 2-step EWSB by M.J. Ramsey-Musolf

$$\oint I_{i} \sim 10 \text{ TeV} \quad V_{0}^{1/4} \sim m_{Z'}$$
temperature at which de Sitter
expansion starts at the origin
$$g < 0.2$$
QCDPT
$$(I) \text{ directly rolling down}$$

$$(\phi = 0, h = v_{QCD})$$

$$h \downarrow$$
Towards the
true minimum
$$V(\phi) \sim (g^{2}T_{QCD}^{2} - |\lambda_{mix}|v_{QCD}^{2}/2)\phi^{2}$$

Interplay of [QCD χSB, confinement, B-L, EW]:

Interplay of [QCD χSB, confinement, B-L, EW]:

Classification of histories of the early universe

Super-cooling generates the second inflation with N ~10

$$N = \ln \frac{T_i}{T_N^{\text{QCD}}} \sim \ln \frac{m_{Z'}}{T_N^{\text{QCD}}}$$

N ~ 10 in region (I)(II) for $m_{Z'}$ =10 TeV N < 10 for g>0.2

Cosmological consequences

In scenario (I) [QCD + (B-L) + EW] strong 1st order phase transition expected

Bubble collsions \rightarrow Sizable Stochastic Gravitational Waves from 1st order PT

Many other implications :

talk by T. Konstandin

- dilution factor 10⁶ dilutes relics from high energy (high temperature)
 - WIMP DM, baryon asymmetry \rightarrow supercool DM Hambye Strumia Teresi(18) low reheat temperature after 2nd mini-inflation (T_R < 100 GeV)
 - Baryon asymmetry at low T: e.g. Cold EWBG Konstandin, Servant (11)
- Enhanced scalar fluctuations

•

• PBH by 1st order QCD PT or Ultra-compact mini halo Jedamzik (97), Ricotti et(09)

Summary of part 1

In classically conformal models motivated by naturalness, the early universe is drastically different

extreme SUPERCOOLING and the second inflation with N~10

Interesting cosmological consequences Stochastic GW, PBH, Cold EWBH, axion abundance , supercool DM

Supercooling is also expected in other models, e.g. Randall-Sundrum models, Harling, Servant (18)

Part 2 **Top-down** approach to the Higgs hierarchy problem

- Revolving D-branes -

N. Kitazawa, SI H. Ohta, T. Suyama, SI arXiv:1812.11505 N. Kitazawa, SI

PTEP (15) arXiv:1812.08912 In a field theoretic approach,

there are many different proposals to solve the hierarchy problem.

But there is one common basic assumption:

"Calculate the Higgs potential first !"

And then obtain a solution = minimum of the potential. one solution to one Higgs potential

 \rightarrow Then we are often faced with the naturalness problem

$$- + \left(\bigcirc + - \right) = \frac{3y_t^2}{8\pi^2} \Lambda^2$$

Question: Can we first obtain a solution of <H> in a geometric way and then calculate low-energy EFT in the SM.

Analogy with

Higgs potential itself may be a function of <H>.

Any radius of orbits is a solution to the effective potential. Initial condition (angular momentum) gives a different orbit.

The mechanism looks as if any value of <H> is a minimum of V(H; <H>). Stringy view of our "universe" and "Higgs" sector:

Geometry in string theory = Dynamics in QFT

 [1] (3+1)-dimensional space-time is embedded in d=9+1. Either compactification or brane-world scenario
 [2] Higgs (scalar) field is a geometrical "moduli" field e.g. distance between D-branes

volume / shape of extra-dimension etc.

[3] VEVs of moduli fields are proportional to the geometrical size.

An example of D-brane configurations for SM

Attractive force between D3s and anti-D7 due to open string 1-loop amplitudes

 $\mu^2 \sum |Z_3^{(a)}|^2$

$$\mu^2 = \frac{1}{C^2} \frac{g^2}{16\pi^2} M_s^2$$

1-loop suppressed

Repulsive centrifugal force by revolution of D3s

$$M \ll M_s$$

N.Kitazawa SI PTEP,2015

High angular frequency $\omega = \mu \sim \frac{g}{4\pi} M_s$ Low velocity $v = \omega d \sim \frac{v_0}{M_s} \ll 1$

32

It is possible to make a classically stable state with a short distance; $d \ll l_{\rm string}\,.$

Such short distance region is described by low energy modes of open strings (D-brane EFT) instead of closed strings (supergravity).

→ Hierarchy problem can be avoided by using the geometrical approach in string theory

But the large angular frequency causes two serious problems

$$\omega = \mu \sim \frac{g}{4\pi} M_s$$

 Lorentz symmetry is violated in the dispersion relation of Higgs field (Coriolis force).

· closed string emission \rightarrow unstable

To avoid large angular frequency, we need weaker attractive force

→ BPS configuration of D-branes no-force (flat potential) at rest, but attract each other when they are moving.

Experimental test of the geometric scenario

Lorentz violation in the Higgs sector (Coriolis force for Higgs field since it is geometrical.)

$$\omega^2 = M^2 + (1 + \frac{4\omega_0^2}{M^2})p^2 + 16\frac{\omega_0^4}{M^6}p^4 + \cdots$$
 N. Kitazawa, SI ('18)

 $\omega_0 < 0.1 \text{ GeV}$

Message in Part 2 (top-down approach)

In string theory, Higgs has a geometrical meaning. And if it is stabilized by stationary motion, it will be tested (or falsified) by looking at a tiny violation of Lorentz invariance in the Higgs sector.

- From the bottom-up classically conformal = no dimensionful paraemter in Lagrangian
 → CW mechanism → <H> given radiatively intriguing phenomenology & cosmology (supercooling)
- From the top-down
 Flat moduli = no dimensionful paraemter in Lagrangian
 → revolution of D3 breaks SUSY → <H> given geometrically Lorentz violation in Higgs sector

Hierarchy problem

- from bottom-up and/or top-down -

 In both approaches, No dimensionful parameters in Lagrangian but its dimensionful value <H> is govey by "dimensional transmutation".
 First determine Higgs vev <H>, then calculate the Higgs potential.

I hope to connect bottom-up and top-down in near future.

Higgs is a probe for new physics = HPNP