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Current	status	of	Particle	Physics	Phenomenology	

Ø  Success	of	the	Standard	Model		

The	best	particle	physics	theory	for	decades	

Ø  Problems	of	the	Standard	Model		

•  Gauge	hierarchy	problem	
•  The	origin	of	the	electroweak	symmetry	breaking	
•  Fermion	mass	hierarchy	
•  Strong	CP	problem,	and	more	

Theoretical/conceptual	

•  Neutrino	masses	&	flavor	mixings	
•  Dark	Matter	in	the	Universe	

Experimental/Observational	Evidences	



The	main	subject	of	particle	physics:	
			
				Quest	for		
										New	Physics	beyond	the	Standard	Model	



Current	status	in	the	light	of	LHC	

Ø  Success	of	the	Standard	Model	even	at	TeV		

Ø  No	evidence	of	NP	so	far	

•  Higgs	boson	discovery		
•  Higgs	boson	properties	consistent	with	SM	predictions	
•  SM	gauge	interactions		

What	is	an	indication	of	the	LHC	results?		



Case	1	

All/part	of	new	particles	in	the	NP	sector	have	the	
SM	gauge	charges	

SM	

NP	

NP	SM	

LHC	data	may	indicate	that	new	particles	are	heavy	
and	we	need	to	wait	for	their	discovery	some	more	
years/need	new	machine	



Case	2	

All	new	particles	in	the	NP	sector	are	SM	gauge	singlet	

NP	SM	

New	particles	very	weakly	couple	to	the	SM	sector.	
It	could	be	very	difficult	to	explore	the	NP	sector.		

Mediators	

Hope?		
Although	new	particles	are	rarely	produced,	they	may	
be	long-lived	à	displaced	vertex	signature				



What	particle	is	a	mediator/portal?	

•  Structure	of	the	SM:	Chiral	Gauge	Theory		
	
•  Assumption:	New	particles	are	SM	singlet		
																								Theory	is	renormalizable		

Ø It	is	most	likely	Higgs	is	the	portal		
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Table 1: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.
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Higgs	as	a	probe	of	long-lived	particle	productions	

HL-LHC	physics	or	more	future	collider	physics		

1)  Higgs	boson	productions		
2)  Higgs	boson	rare	decays	to	long-lived	particles	
3)  Displaced	vertex	signature	of	long-lived	particle	

decays		

Two	possibilities		
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Table 1: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.
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Recent	proposal	for	a	dedicated	LLP	search	
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FIG. 2. Left: Simplified MATHUSLA detector layout with leptonic or hadronic LLP decay. . Right:
CERN-owned land near CMS (orange) that would be a suitable site for MATHUSLA. An optimized geom-
etry on a fraction of this available land would achieve the same sensitivity as the original 200m ⇥ 200m
benchmark [1, 2] while having only ⇠ 1/3 that area.

geometry that is tailored to the available experimental site. This will also be an important factor
in reducing the cost of the full detector.

For LLPs with lifetimes & 100m, MATHUSLA will have as many LLP decays in its detector
volume as will ATLAS or CMS. Crucial to its greater LLP sensitivity is the fact that unlike the
main detectors, MATHUSLA can search for LLP decays without trigger restrictions and in the
near-zero-background regime.

The dominant background on the surface is cosmic rays (CRs), which are incident on the full
detector with a rate in the MHz range, corresponding to ⇠ 1015 charged tracks over the whole
HL-LHC run. Their rejection depends on the robust ceiling tracking system, comprised of ⇠5 lay-
ers (the required number of layers will be determined by detailed study) with spatial and temporal
resolutions in cm and nanosecond range, respectively. If the layers of this tracking system span a
vertical distance of a few meters, full 4-dimensional track and displaced vertex reconstruction is
possible, which significantly reduces the combinatorial backgrounds since associated tracks must
intersect in both space and time to form a vertex. This is an extremely stringent signal require-
ment even for LLPs with just two charged final states, but especially for hadronic LLP decays
with O(10) charged final states. Both Resistive Plate Chambers (RPCs) and plastic scintillators
are time-tested technologies that easily meet the specifications needed for stringent background
rejection. As argued in [1], since CRs travel downwards and do not inherently form DVs, this
signal requirement is expected to allow MATHUSLA to reach the near-zero-background regime.

Other backgrounds are easier to handle. Upwards traveling muons from the LHC do not give
a DV or, if they scatter or undergo rare decays that mimic LLP decays, can be vetoed by the
floor detector. Neutrinos from atmospheric cosmic rays and the LHC scatter off air in the detector
volume ⇠ 100 times during the entire HL-LHC run, but can be rejected with geometrical cuts and
timing vetoes on non-relativistic charged tracks associated with the scattering event.

Even though MATHUSLA is basically just a large particle tracker without any energy or mo-
mentum measurement, it will still be able to measure many important properties of any LLP decays
it observes [5]. Final state multiplicity would distinguish between leptonic and hadronic decay
modes, while the geometry of the DV can be used to measure the LLP Lorentz boost event-by-
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NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
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MATHUSLA	search	reach	

The	best	reach	for	Br(h->XX)	is	10^(-5)	!	

mX = 5 GeV
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FIG. 4. MATHUSLA reach for weak- and TeV-scale LLP decays at the HL-LHC. (a) Exotic Higgs decays
to LLPs, MATHUSLA (solid) versus LHC main detectors (dashed) [6]. Figure from [1]. (b) Long-lived
Higgsinos in various models of supersymmetry. Contours show the number of Higgsino decays in MATH-
USLA as a function of Higgsino mass µ and decay length c⌧ . Plot reproduced from [2].

2. The LHC Main Detectors are blind to large regions of the LLP signature space.

For example, searches for LLPs decaying to hadrons (leptons) with less than a few 100 GeV
(⇠ 10 GeV) of visible energy in the event have particularly low trigger efficiency and are
highly constrained by QCD and other backgrounds.

3. MATHUSLA reclaims sensitivity in these blind spots with orders of magnitude greater
cross section/lifetime reach than the LHC main detectors, and the ability to discovery
LLPs with masses ranging from MeV to TeV.

This can be demonstrated with a few representative and well-motivated examples. Fig. 4 (a)
compares the sensitivity of MATHUSLA to hadronically decaying LLPs produced in exotic
Higgs decays to the projected sensitivity of an ATLAS search in the muon system. MATH-
USLA can probe three orders of magnitude smaller LLP production rates (or longer lifetime)
than the LHC main detectors. This is one of the most important LLP benchmarks, since it
could provide the smoking gun for many BSM theories like Neutral Naturalness or general
Hidden Valleys.

Figure 4 (b) demonstrates that MATHUSLA can detect Long-lived Higgsinos with masses
exceeding a TeV, which arise in theories including gauge mediation, supersymmetric axion
models, and R-parity violation. MATHUSLA is also able to probe low-mass LLPs in the
MeV-GeV range, including dark scalars or right-handed neutrinos, via their production in
exotic decays of B-hadrons, see Fig. 5.

For LLP production cross sections in the pb range, MATHUSLA can probe lifetimes ap-
proaching the c⌧ . 107m upper limit from Cosmology [3]. Achieving sensitivity to this
cosmological limit of LLP parameter space for production rates corresponding to plausible ex-
otic Higgs decay fractions is especially significant, since it would allow for MATHUSLA to ver-
ify the nature of any invisible Higgs decay signal observed at the HL-LHC main detectors: if
MATHUSLA also sees a signal, we discover the LLPs that are produced in this invisible decay;
if MATHUSLA sees no signal, it would strongly support the hypothesis that the invisible Higgs
decay produced a cosmologically significant DM candidate.
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Physics	Study	with	a	simple	NP	model	

Minimal	gauged	B-L	extension	of	the	Standard	Model	

Ø  B-L	is	the	unique	anomaly	free	global	symmetry	in	the	SM	

Ø  Gauging	the	global	B-L	symmetry	may	be	natural		

Ø  Anomaly	free	requirement	à	3	right-handed	neutrinos	

Ø  Seesaw	mechanism	is	automatically	implemented	

A	simple	gauge	extension	of	the	SM	for	neutrino	masses	

In	terms	of	high	energy	collider	physics,		
we	focus	on	the	gauged	U(1)	extended	model	@	TeV	



Minimal	Gauged	B-L	Extension	of	the	SM	

The	model	is	based	on		

Particle	Contents		

New	fermions:	

New	scalar:	

Mohapatra	&	Marshak;		
Wetterich;	others	

i=1,2,3		

New	particles	are	all	SM	singlet	
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Table 1: Particle content of the minimal B � L model. In addition to the SM particle
content, three RHNs (N i

R
, i = 1, 2, 3 denotes the generation index) and a complex scalar (')

are introduced.

work on a diagonal basis for the Majorana Yukawa couplings (YN) without loss of generality.
Associated with the B � L gauge symmetry breaking, the B � L gauge boson (Z 0 boson) and
the RHNs acquire their masses as follows:

mZ0 = 2 g vBL, mN i =
Y i

N
p
2
v�, (3.2)

where vBL =
p
2h'i is the VEV of the B � L Higgs field.

A renormalizable scalar potential for the B � L Higgs field (') and the SM Higgs doublet
(H) is given by
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where vSM = 246 GeV is the VEV of the SM Higgs doublet, and we take �0 > 0 which introduces
a mixing between the two scalar fields. In the unitary gauge, we expand the SM and B � L
Higgs fields around their VEVs, hHi = (

vSMp
2

0)
T and h'i = vBL/

p
2, to identify �SM and �BL

being the SM and the B�L Higgs bosons in the original basis. The mass matrix for the Higgs
bosons is given by
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. We diagonalize the mass matrix by
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�
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
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� sin ✓ cos ✓
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h
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�
, (3.5)

where h and � are the mass eigenstates. The relations among the mass parameters and the
mixing angle (✓) are the following:
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U(1)B-L	symmetry	breaking	via		

U(1)x	gauge	boson	(Z’	boson)	mass	
	
			
Heavy	Majorana	neutrino	mass	

Mass	scale	is	controlled	
by	U(1)B-L	Sym.	Br.	scale		
	
	
U(1)B-L	sym	breaking	
also	generates	RHN	mass		

New	Yukawa	terms	in	Lagrangian	

Seesaw	mechanism	after	EW	sym.	breaking		
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Figure 2: The search reach of the displaced vertex signatures at the HL-LHC (dashed lines in
Fig. 1) for mS = 50 (solid), 125 (dashed) and 400 (dot-dashed) GeV with mX = 20 GeV. We
have employed Eq. (2.2) to plot the lines for mS = 50 and 400 GeV, based on the dashed line
for mS = 125 GeV.

In Ref. [56], the search reach of the cross sections are shown for three benchmark values of
mX = 5, 20 and 40 GeV. We have checked that our formula of Eq. (2.2) can reproduce the
results for mX = 5 and 40 GeV in Ref. [56] from the result for mX = 20 GeV. In Fig. 2, we show
the search reach at the HL-LHC for mS = 50 GeV (solid line) and mS = 400 GeV (dot-dashed
line) by employing the result for mS = 125 GeV (dashed line) and Eq. (2.2). Here, we have
fixed mX = 20 GeV. As we raise/lower mS for mX = 20 GeV, the line shifts to the left/right,
since the created X particle is more/less boosted. In the following, we employ the generalized
formula to investigate the search reach of long-lived RHNs at the future high energy colliders.

3 The minimal B � L extended Standard Model
Here we review the minimal B � L extended SM (the minimal B � L model). The particle
content of the model is listed in Table 1. In this model, the global B � L symmetry in the
SM is gauged, and in addition to the SM particle content, three RHNs and a complex scalar
(B�L Higgs field) are introduced. While the B�L Higgs field spontaneously breaks the B�L
symmetry by its vacuum expectation value (VEV), the three RHNs are necessary to cancel all
the gauge and mixed-gravitational anomalies.

The Yukawa sector of the SM is extended to include

LY � �

3X

i,j=1

Y ij

D
`i
L
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R
�

1

2

3X

k=1

Y k

N
�Nk c

R
Nk

R
+ h.c., (3.1)

where the first and second terms are the Dirac and Majorana Yukawa couplings. Here, we
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What	particle	is	the	portal	in	the	B-L	model?		

NP	SM	

Mediators	

1)  B-L	gauge	boson	(Z’	boson)	

5

Z’BL portal dark matter

The dark matter particle can communicate with 
the SM particles through the Z’BL boson.

Z’BL portal dark matter=

・B-L gauge coupling (αBL) 
・Z’BL boson mass (mZ’) 
・dark matter mass (mDM)

Only three free parameters are involved in 
dark matter physics analysis.

f

f̄NR

NR

Z 0
BL



Z’	portal	case	is	already	very	severely	constrained	by	the	search	at	
the	LHC		(	Z’	resonance	search	with	dilepton)	

Benchmark	model:	sequential	SM	Z’	boson	
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ATLAS	with	36.1/fb	

Search	for	a	narrow	
resonances	with	
dilepton	final	states	



Future	prospect	on	Z’	boson	bound	from	HL-LHC	
Z’	à e+e−

u High	mass	di-
electron	
resonance	
search

u Interpretation	in	
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4. Interpretation of LHC Run-2 results
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(i)	Higgs	portal	production	of	Heavy	Majorana	Neutrinos	
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Table 1: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
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Since	the	Higgs	boson	properties	measured	at	LHC	are	consistent	
with	the	SM	predictions,	we	assume	the	mixing	between	Higgses	
is	small	<	0.1	
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Figure 9: The plots shows the parameter space when the RHNs production at the LHC is
dominated by SM Higgs decay for fixed m� = 70 GeV and mN = 20 GeV. In the left panel,
along dashed (solid) diagonal lines with a negative slope, the RHN production cross section
at the LHC from the SM Higgs decay is fixed to be the best search reach value for the HL-
LHC (MATHUSLA) displaced vertex searches �(pp ! XX) = 20.7(0.3) fb in Fig. 1. The
gray shaded region are excluded region by the SM Higgs boson invisible decays searches [67].
The plot also shows BR(� ! NN) lines, diagonal solid lines with positive slope. From top
to bottom, along the line, BR(� ! NN) = 99.99%, 98%, 75%, and 25%, respectively. In
the right panel, for a fixed Y value, the diagonal lines show the the Z 0 boson gauge coupling
values as a function of m0

Z
, along with the excluded shaded regions from various Z 0 boson

searches. The Yukawa values are chosen to satisfy BR(� ! NN) = 98% in the left panel.
The dotted diagonal line correspond to Y ' 1.90 ⇥ 10

�2 is fixed using the intersection of the
BR(� ! NN) = 98% with the dotted line. Similarly, the dashed (solid) line correspond to
Y ' 1.00 ⇥ 10

�2 (3.59 ⇥ 10
�3) fixed using the intersection of BR(� ! NN) = 98% with the

dashed (HL-LHC) and solid (MATHUSLA) lines.

h, separately, as

�NN(m�) =
R(m�) tan

2 ✓

sin
2 ✓ �R(m�)

✓
�SM(m�) +

�(� ! hh)

sin
2 ✓

◆
,

�NN(mh) =
R(mh) cot

2 ✓

cos2 ✓ �R(mh)
�SM(mh), (4.15)

where R is defined as

R(mS) =
�min

�h(mS)
. (4.16)

Using Eqs. (4.6) and (4.15), we then obtain the relation between Y and ✓ for each case as
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HL-LHC	
MATHUSLA	

LHC	exclude	

Figure 7: The plots show (i) the best reaches of displaced vertex searches at the HL-LHC
(dashed curve) and the the MATHUSLA (dotted curve); (ii) branching ratios of � ! NN
denoted as the diagonal solid lines (BR(� ! NN) = 99.99%, 98%, 75%, and 25%, respectively,
from top to bottom); (iii) the excluded region (gray shaded) from the LHC constraint on the
Higgs branching ratio into the invisible decay mode [67].

(dotted curve); (ii) branching ratios of � ! NN denoted as the diagonal solid lines (BR(� !

NN) = 99.99%, 98%, 75%, and 25%, respectively, from top to bottom); (iii) the excluded
region (gray shaded) from the LHC constraint on the Higgs branching ratio into the invisible
decay mode, namely,

BRhiggs
inv = sin

2 ✓ ⇥ BR(� ! NN) + cos
2 ✓ ⇥ BR(h ! NN) < 0.23. (4.13)

Note that along the dashed curve, the RHN pair production is dominated by the decay of h (�)
for sin ✓ < 0.02 (sin ✓ > 0.02). Similarly, the RHN pair production is dominated by the decay
of h (�) for sin ✓ < 0.002 (sin ✓ > 0.002) along the solid curve.

In our model, once Y and mN are fixed, the relation between the B�L gauge coupling and
the Z 0 boson mass is determined by (see Eq. (3.2))

gBL =
1

2
p
2

Y

mN

mZ0 . (4.14)

The Z 0 boson has been searched by various experiments, and the upper bound on the B � L
gauge coupling as a function of its mass is obtained for a wide mass range of O(1) . mZ0 [GeV] 

5000. For a Y value chosen in Fig. 7, we examine the consistency with the current constraints
from the Z 0 boson search. For several benchmark Y values, we show in Fig. 8 the relation
of Eq. (4.14) along with the current experimental constraints from the Z 0 boson searches (the
shaded regions are excluded from the result in Ref. [68], the LHCb results [69, 70], and the
resent ATLAS results [71]). In the left panel, we show the relation for Y = 0.0181 (dotted),
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Is	the	N’s	lifetime	is	adjustable?		

Seesaw	formula:	

Figure 13: The search reach of the displaced vertex searches at the HL-LHC and MATHUSLA.
For BR(S ! XX) ' 100%, the red (gray) shaded region is excluded by the LEP (LHC)
experiments.

Benchmark Points Mixing angle (✓) Search Reach of mS[GeV]

MATHUSLA HL-LHC

BP1 8 ⇥10
�3 476 39

BP2 5 ⇥10
�2 972 293

BP3 1⇥ 10
�2 556 65

Table 2: Summary of � mass reach at MATHUSLA and HL-LHC experiment.

5 Lifetime of heavy neutrinos
We assumed a suitable lifetime of the heavy neutrino in the previous section. In this section, we
calculate the lifetime of the heavy neutrinos for realistic parameters to reproduce the neutrino
oscillation data and investigate the prospect of searching for the displaced vertex signatures of
the heavy neutrino productions.

After the B�L and electroweak symmetry breakings, the neutrino mass matrix is generated
to be

M⌫ =

✓
0 mD

(mD)
T MN

◆
, (5.1)

where MN and mD are the Majorana and the Dirac mass matrices, respectively. From Eqs. (3.1)
and (3.2), we have MN = diag(mN1 ,mN2 ,mN3) and mij

D
= Y ij

D
vSM/

p
2. Assuming the mass

hierarchy |mij

D
/mNk | ⌧ 1, the seesaw formula for the light Majorana neutrinos is given by

m⌫ ' �mD(MN)
�1mT

D
. (5.2)
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The light neutrino flavor eigenstate (⌫) can be expressed in terms the light (⌫m) and heavy
(Nm) Majorana neutrino mass eigenstates, ⌫ ' N ⌫m + RNm, where R = mD(MN)

�1, N =⇣
1�

1
2R

⇤
R

T

⌘
' UMNS, and UMNS is the neutrino mixing matrix which diagonalizes m⌫ by

UT

MNSm⌫UMNS = D⌫ = diag(m1,m2,m3), (5.3)

where the neutrino mixing matrix is parameterized as

UMNS =

0

@
c12c13 c12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12c23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A

0

@
1 0 0

0 e�i⇢1 0

0 0 e�i⇢2

1

A , (5.4)

where cij = cos ✓ij, sij = sin ✓ij, � is the Dirac CP phase, and ⇢1 and ⇢2 are the Majorana CP
phases. Using the Eqs. (5.2) and (5.3), the Dirac mass matrix is parameterized as [72]

mD = U⇤
MNS

p
D⌫ O

p
MN , (5.5)

where O is a general orthogonal matrix,
p
MN ⌘ diag(

p
mN1 ,

p
mN2 ,

p
mN3) and

p
D⌫ ⌘

diag(
p
m1,

p
m2,

p
m3).

The charged current interaction of the neutrino mass eigenstates is expressed as

LCC = �
g
p
2
Wµ`↵�

µPL

�
N↵i⌫

i

m
+R↵iN

i

m

�
+ h.c., (5.6)

where `↵ are the 3 generations of the charged SM leptons, and PL = (1 � �5)/2 is the left
handed projection operator. Similarly, for the the neutral current interaction, we have

LNC = �
g

2 cos ✓W
Zµ

h
⌫i
m
�µPL(N

†
N )ij⌫

j

m
+N i

m
�µPL(R

†
R)ijN

j

m

+

n
⌫i
m
�µPL(N

†
R)ijN

j

m
+H.c.

oi
, (5.7)

where ✓W is the weak mixing angle.
With the general parameterization of Eq. (5.5), the matrix R is given by

R↵i = mD(MN)
�1

= U⇤
MNS

p
D⌫ O(

p
MN)

�1. (5.8)

In order to fix R↵i, we employ the neutrino oscillation data: sin
2
2✓13 = 0.092 [73] along

with sin
2
2✓12 = 0.87, sin2

2✓23 = 1.0, as well as the mass squared differences, �m2
12 = m2

2 �

m2
1 = 7.6 ⇥ 10

�5 eV2 and �m2
23 = |m2

3 � m2
2| = 2.4 ⇥ 10

�3 eV2 [3]. Motivated by the recent
measurements, we also fix the Dirac CP phase as � = 3⇡

2 [74], while we simply take ⇢1 = ⇢2 = 0

for the Majorana CP phases. To simplify our analysis, we set the orthogonal matrix O to be
the identity matrix and assume the mass degeneracy for three heavy neutrinos, mN1,2,3 = mN .
For the light neutrino mass spectrum, we consider two cases: the normal hierarchy (NH),
m1 < m2 < m3, and the inverted hierarchy (IH), m3 < m1 < m2.

Let us now consider the decay of the heavy neutrinos into the SM particles. In our analysis,
we set mN = 20 GeV, hence the heavy neutrino decays into the SM quarks and leptons via
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General	parameterization	(Casas-Ibarra):		
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where ✓W is the weak mixing angle.
With the general parameterization of Eq. (5.5), the matrix R is given by

R↵i = mD(MN)
�1

= U⇤
MNS

p
D⌫ O(

p
MN)

�1. (5.8)

In order to fix R↵i, we employ the neutrino oscillation data: sin
2
2✓13 = 0.092 [73] along

with sin
2
2✓12 = 0.87, sin2

2✓23 = 1.0, as well as the mass squared differences, �m2
12 = m2

2 �

m2
1 = 7.6 ⇥ 10

�5 eV2 and �m2
23 = |m2

3 � m2
2| = 2.4 ⇥ 10

�3 eV2 [3]. Motivated by the recent
measurements, we also fix the Dirac CP phase as � = 3⇡

2 [74], while we simply take ⇢1 = ⇢2 = 0

for the Majorana CP phases. To simplify our analysis, we set the orthogonal matrix O to be
the identity matrix and assume the mass degeneracy for three heavy neutrinos, mN1,2,3 = mN .
For the light neutrino mass spectrum, we consider two cases: the normal hierarchy (NH),
m1 < m2 < m3, and the inverted hierarchy (IH), m3 < m1 < m2.

Let us now consider the decay of the heavy neutrinos into the SM particles. In our analysis,
we set mN = 20 GeV, hence the heavy neutrino decays into the SM quarks and leptons via

19

	where	

O:	general	orthogonal	matrix			

The light neutrino flavor eigenstate (⌫) can be expressed in terms the light (⌫m) and heavy
(Nm) Majorana neutrino mass eigenstates, ⌫ ' N ⌫m + RNm, where R = mD(MN)

�1, N =⇣
1�

1
2R

⇤
R

T

⌘
' UMNS, and UMNS is the neutrino mixing matrix which diagonalizes m⌫ by

UT

MNSm⌫UMNS = D⌫ = diag(m1,m2,m3), (5.3)

where the neutrino mixing matrix is parameterized as

UMNS =

0

@
c12c13 c12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12c23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A

0

@
1 0 0

0 e�i⇢1 0

0 0 e�i⇢2

1

A , (5.4)

where cij = cos ✓ij, sij = sin ✓ij, � is the Dirac CP phase, and ⇢1 and ⇢2 are the Majorana CP
phases. Using the Eqs. (5.2) and (5.3), the Dirac mass matrix is parameterized as [72]

mD = U⇤
MNS

p
D⌫ O

p
MN , (5.5)

where O is a general orthogonal matrix,
p
MN ⌘ diag(

p
mN1 ,

p
mN2 ,

p
mN3) and

p
D⌫ ⌘

diag(
p
m1,

p
m2,

p
m3).

The charged current interaction of the neutrino mass eigenstates is expressed as

LCC = �
g
p
2
Wµ`↵�

µPL

�
N↵i⌫

i

m
+R↵iN

i

m

�
+ h.c., (5.6)

where `↵ are the 3 generations of the charged SM leptons, and PL = (1 � �5)/2 is the left
handed projection operator. Similarly, for the the neutral current interaction, we have

LNC = �
g

2 cos ✓W
Zµ

h
⌫i
m
�µPL(N

†
N )ij⌫

j

m
+N i

m
�µPL(R

†
R)ijN

j

m

+

n
⌫i
m
�µPL(N

†
R)ijN

j

m
+H.c.

oi
, (5.7)

where ✓W is the weak mixing angle.
With the general parameterization of Eq. (5.5), the matrix R is given by

R↵i = mD(MN)
�1

= U⇤
MNS

p
D⌫ O(

p
MN)

�1. (5.8)

In order to fix R↵i, we employ the neutrino oscillation data: sin
2
2✓13 = 0.092 [73] along

with sin
2
2✓12 = 0.87, sin2

2✓23 = 1.0, as well as the mass squared differences, �m2
12 = m2

2 �

m2
1 = 7.6 ⇥ 10

�5 eV2 and �m2
23 = |m2

3 � m2
2| = 2.4 ⇥ 10

�3 eV2 [3]. Motivated by the recent
measurements, we also fix the Dirac CP phase as � = 3⇡

2 [74], while we simply take ⇢1 = ⇢2 = 0

for the Majorana CP phases. To simplify our analysis, we set the orthogonal matrix O to be
the identity matrix and assume the mass degeneracy for three heavy neutrinos, mN1,2,3 = mN .
For the light neutrino mass spectrum, we consider two cases: the normal hierarchy (NH),
m1 < m2 < m3, and the inverted hierarchy (IH), m3 < m1 < m2.

Let us now consider the decay of the heavy neutrinos into the SM particles. In our analysis,
we set mN = 20 GeV, hence the heavy neutrino decays into the SM quarks and leptons via

19

The light neutrino flavor eigenstate (⌫) can be expressed in terms the light (⌫m) and heavy
(Nm) Majorana neutrino mass eigenstates, ⌫ ' N ⌫m + RNm, where R = mD(MN)

�1, N =⇣
1�

1
2R

⇤
R

T

⌘
' UMNS, and UMNS is the neutrino mixing matrix which diagonalizes m⌫ by

UT

MNSm⌫UMNS = D⌫ = diag(m1,m2,m3), (5.3)

where the neutrino mixing matrix is parameterized as

UMNS =

0

@
c12c13 c12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12c23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A

0

@
1 0 0

0 e�i⇢1 0

0 0 e�i⇢2

1

A , (5.4)

where cij = cos ✓ij, sij = sin ✓ij, � is the Dirac CP phase, and ⇢1 and ⇢2 are the Majorana CP
phases. Using the Eqs. (5.2) and (5.3), the Dirac mass matrix is parameterized as [72]

mD = U⇤
MNS

p
D⌫ O

p
MN , (5.5)

where O is a general orthogonal matrix,
p
MN ⌘ diag(

p
mN1 ,

p
mN2 ,

p
mN3) and

p
D⌫ ⌘

diag(
p
m1,

p
m2,

p
m3).

The charged current interaction of the neutrino mass eigenstates is expressed as

LCC = �
g
p
2
Wµ`↵�

µPL

�
N↵i⌫

i

m
+R↵iN

i

m

�
+ h.c., (5.6)

where `↵ are the 3 generations of the charged SM leptons, and PL = (1 � �5)/2 is the left
handed projection operator. Similarly, for the the neutral current interaction, we have

LNC = �
g

2 cos ✓W
Zµ

h
⌫i
m
�µPL(N

†
N )ij⌫

j

m
+N i

m
�µPL(R

†
R)ijN

j

m

+

n
⌫i
m
�µPL(N

†
R)ijN

j

m
+H.c.

oi
, (5.7)

where ✓W is the weak mixing angle.
With the general parameterization of Eq. (5.5), the matrix R is given by

R↵i = mD(MN)
�1

= U⇤
MNS

p
D⌫ O(

p
MN)

�1. (5.8)

In order to fix R↵i, we employ the neutrino oscillation data: sin
2
2✓13 = 0.092 [73] along

with sin
2
2✓12 = 0.87, sin2

2✓23 = 1.0, as well as the mass squared differences, �m2
12 = m2

2 �

m2
1 = 7.6 ⇥ 10

�5 eV2 and �m2
23 = |m2

3 � m2
2| = 2.4 ⇥ 10

�3 eV2 [3]. Motivated by the recent
measurements, we also fix the Dirac CP phase as � = 3⇡

2 [74], while we simply take ⇢1 = ⇢2 = 0

for the Majorana CP phases. To simplify our analysis, we set the orthogonal matrix O to be
the identity matrix and assume the mass degeneracy for three heavy neutrinos, mN1,2,3 = mN .
For the light neutrino mass spectrum, we consider two cases: the normal hierarchy (NH),
m1 < m2 < m3, and the inverted hierarchy (IH), m3 < m1 < m2.

Let us now consider the decay of the heavy neutrinos into the SM particles. In our analysis,
we set mN = 20 GeV, hence the heavy neutrino decays into the SM quarks and leptons via

19

The light neutrino flavor eigenstate (⌫) can be expressed in terms the light (⌫m) and heavy
(Nm) Majorana neutrino mass eigenstates, ⌫ ' N ⌫m + RNm, where R = mD(MN)

�1, N =⇣
1�

1
2R

⇤
R

T

⌘
' UMNS, and UMNS is the neutrino mixing matrix which diagonalizes m⌫ by

UT

MNSm⌫UMNS = D⌫ = diag(m1,m2,m3), (5.3)

where the neutrino mixing matrix is parameterized as

UMNS =

0

@
c12c13 c12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12c23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A

0

@
1 0 0

0 e�i⇢1 0

0 0 e�i⇢2

1

A , (5.4)

where cij = cos ✓ij, sij = sin ✓ij, � is the Dirac CP phase, and ⇢1 and ⇢2 are the Majorana CP
phases. Using the Eqs. (5.2) and (5.3), the Dirac mass matrix is parameterized as [72]

mD = U⇤
MNS

p
D⌫ O

p
MN , (5.5)

where O is a general orthogonal matrix,
p
MN ⌘ diag(

p
mN1 ,

p
mN2 ,

p
mN3) and

p
D⌫ ⌘

diag(
p
m1,

p
m2,

p
m3).

The charged current interaction of the neutrino mass eigenstates is expressed as

LCC = �
g
p
2
Wµ`↵�

µPL

�
N↵i⌫

i

m
+R↵iN

i

m

�
+ h.c., (5.6)

where `↵ are the 3 generations of the charged SM leptons, and PL = (1 � �5)/2 is the left
handed projection operator. Similarly, for the the neutral current interaction, we have

LNC = �
g

2 cos ✓W
Zµ

h
⌫i
m
�µPL(N

†
N )ij⌫

j

m
+N i

m
�µPL(R

†
R)ijN

j

m

+

n
⌫i
m
�µPL(N

†
R)ijN

j

m
+H.c.

oi
, (5.7)

where ✓W is the weak mixing angle.
With the general parameterization of Eq. (5.5), the matrix R is given by

R↵i = mD(MN)
�1

= U⇤
MNS

p
D⌫ O(

p
MN)

�1. (5.8)

In order to fix R↵i, we employ the neutrino oscillation data: sin
2
2✓13 = 0.092 [73] along

with sin
2
2✓12 = 0.87, sin2

2✓23 = 1.0, as well as the mass squared differences, �m2
12 = m2

2 �

m2
1 = 7.6 ⇥ 10

�5 eV2 and �m2
23 = |m2

3 � m2
2| = 2.4 ⇥ 10

�3 eV2 [3]. Motivated by the recent
measurements, we also fix the Dirac CP phase as � = 3⇡

2 [74], while we simply take ⇢1 = ⇢2 = 0

for the Majorana CP phases. To simplify our analysis, we set the orthogonal matrix O to be
the identity matrix and assume the mass degeneracy for three heavy neutrinos, mN1,2,3 = mN .
For the light neutrino mass spectrum, we consider two cases: the normal hierarchy (NH),
m1 < m2 < m3, and the inverted hierarchy (IH), m3 < m1 < m2.

Let us now consider the decay of the heavy neutrinos into the SM particles. In our analysis,
we set mN = 20 GeV, hence the heavy neutrino decays into the SM quarks and leptons via

19

The light neutrino flavor eigenstate (⌫) can be expressed in terms the light (⌫m) and heavy
(Nm) Majorana neutrino mass eigenstates, ⌫ ' N ⌫m + RNm, where R = mD(MN)

�1, N =⇣
1�

1
2R

⇤
R

T

⌘
' UMNS, and UMNS is the neutrino mixing matrix which diagonalizes m⌫ by

UT

MNSm⌫UMNS = D⌫ = diag(m1,m2,m3), (5.3)

where the neutrino mixing matrix is parameterized as

UMNS =

0

@
c12c13 c12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12c23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A

0

@
1 0 0

0 e�i⇢1 0

0 0 e�i⇢2

1

A , (5.4)

where cij = cos ✓ij, sij = sin ✓ij, � is the Dirac CP phase, and ⇢1 and ⇢2 are the Majorana CP
phases. Using the Eqs. (5.2) and (5.3), the Dirac mass matrix is parameterized as [72]

mD = U⇤
MNS

p
D⌫ O

p
MN , (5.5)

where O is a general orthogonal matrix,
p
MN ⌘ diag(

p
mN1 ,

p
mN2 ,

p
mN3) and

p
D⌫ ⌘

diag(
p
m1,

p
m2,

p
m3).

The charged current interaction of the neutrino mass eigenstates is expressed as

LCC = �
g
p
2
Wµ`↵�

µPL

�
N↵i⌫

i

m
+R↵iN

i

m

�
+ h.c., (5.6)

where `↵ are the 3 generations of the charged SM leptons, and PL = (1 � �5)/2 is the left
handed projection operator. Similarly, for the the neutral current interaction, we have

LNC = �
g

2 cos ✓W
Zµ

h
⌫i
m
�µPL(N

†
N )ij⌫

j

m
+N i

m
�µPL(R

†
R)ijN

j

m

+

n
⌫i
m
�µPL(N

†
R)ijN

j

m
+H.c.

oi
, (5.7)

where ✓W is the weak mixing angle.
With the general parameterization of Eq. (5.5), the matrix R is given by

R↵i = mD(MN)
�1

= U⇤
MNS

p
D⌫ O(

p
MN)

�1. (5.8)

In order to fix R↵i, we employ the neutrino oscillation data: sin
2
2✓13 = 0.092 [73] along

with sin
2
2✓12 = 0.87, sin2

2✓23 = 1.0, as well as the mass squared differences, �m2
12 = m2

2 �

m2
1 = 7.6 ⇥ 10

�5 eV2 and �m2
23 = |m2

3 � m2
2| = 2.4 ⇥ 10

�3 eV2 [3]. Motivated by the recent
measurements, we also fix the Dirac CP phase as � = 3⇡

2 [74], while we simply take ⇢1 = ⇢2 = 0

for the Majorana CP phases. To simplify our analysis, we set the orthogonal matrix O to be
the identity matrix and assume the mass degeneracy for three heavy neutrinos, mN1,2,3 = mN .
For the light neutrino mass spectrum, we consider two cases: the normal hierarchy (NH),
m1 < m2 < m3, and the inverted hierarchy (IH), m3 < m1 < m2.

Let us now consider the decay of the heavy neutrinos into the SM particles. In our analysis,
we set mN = 20 GeV, hence the heavy neutrino decays into the SM quarks and leptons via

19

Das	&	NO,		
PLB	774	(2017)	32	



The	effective	couplings	with	W/Z	are	controlled	by		

The light neutrino flavor eigenstate (⌫) can be expressed in terms the light (⌫m) and heavy
(Nm) Majorana neutrino mass eigenstates, ⌫ ' N ⌫m + RNm, where R = mD(MN)

�1, N =⇣
1�

1
2R

⇤
R

T

⌘
' UMNS, and UMNS is the neutrino mixing matrix which diagonalizes m⌫ by

UT

MNSm⌫UMNS = D⌫ = diag(m1,m2,m3), (5.3)

where the neutrino mixing matrix is parameterized as

UMNS =

0

@
c12c13 c12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12c23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A

0

@
1 0 0

0 e�i⇢1 0

0 0 e�i⇢2

1

A , (5.4)

where cij = cos ✓ij, sij = sin ✓ij, � is the Dirac CP phase, and ⇢1 and ⇢2 are the Majorana CP
phases. Using the Eqs. (5.2) and (5.3), the Dirac mass matrix is parameterized as [72]

mD = U⇤
MNS

p
D⌫ O

p
MN , (5.5)

where O is a general orthogonal matrix,
p
MN ⌘ diag(

p
mN1 ,

p
mN2 ,

p
mN3) and

p
D⌫ ⌘

diag(
p
m1,

p
m2,

p
m3).

The charged current interaction of the neutrino mass eigenstates is expressed as

LCC = �
g
p
2
Wµ`↵�

µPL

�
N↵i⌫

i

m
+R↵iN

i

m

�
+ h.c., (5.6)

where `↵ are the 3 generations of the charged SM leptons, and PL = (1 � �5)/2 is the left
handed projection operator. Similarly, for the the neutral current interaction, we have

LNC = �
g

2 cos ✓W
Zµ

h
⌫i
m
�µPL(N

†
N )ij⌫

j

m
+N i

m
�µPL(R

†
R)ijN

j

m

+

n
⌫i
m
�µPL(N

†
R)ijN

j

m
+H.c.

oi
, (5.7)

where ✓W is the weak mixing angle.
With the general parameterization of Eq. (5.5), the matrix R is given by

R↵i = mD(MN)
�1

= U⇤
MNS

p
D⌫ O(

p
MN)

�1. (5.8)

In order to fix R↵i, we employ the neutrino oscillation data: sin
2
2✓13 = 0.092 [73] along

with sin
2
2✓12 = 0.87, sin2

2✓23 = 1.0, as well as the mass squared differences, �m2
12 = m2

2 �

m2
1 = 7.6 ⇥ 10

�5 eV2 and �m2
23 = |m2

3 � m2
2| = 2.4 ⇥ 10

�3 eV2 [3]. Motivated by the recent
measurements, we also fix the Dirac CP phase as � = 3⇡

2 [74], while we simply take ⇢1 = ⇢2 = 0

for the Majorana CP phases. To simplify our analysis, we set the orthogonal matrix O to be
the identity matrix and assume the mass degeneracy for three heavy neutrinos, mN1,2,3 = mN .
For the light neutrino mass spectrum, we consider two cases: the normal hierarchy (NH),
m1 < m2 < m3, and the inverted hierarchy (IH), m3 < m1 < m2.

Let us now consider the decay of the heavy neutrinos into the SM particles. In our analysis,
we set mN = 20 GeV, hence the heavy neutrino decays into the SM quarks and leptons via

19

Employing	the	neutrino	oscillation	data,	we	can	calculate	the	
N’s	lifetime.		
	
Example)	degenerate	Ns	(20	GeV)	and	O=	Id	

Figure 6: Representative Feynman diagrams for the Higgs portal Majorana neutrino pair
production and subsequent decay modes.
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Let us now consider the production cross section for the RHNs at the LHC from the � and

h productions and their decays. Using Eqs. (4.1), (4.2) and (4.10), the cross section formulas
are given by

�(pp ! � ! NN) = sin
2 ✓ ⇥ �h(m�)⇥ BR(� ! NN),

�(pp ! h ! NN) = cos
2 ✓ ⇥ �h(mh)⇥ BR(h ! NN), (4.11)

respectively, and they are controlled by four parameters, Y , ✓, m� and mN . Throughout
this section, we fix mN = 20 GeV, for simplicity. The representative diagrams of the RHN
productions including their decays are shown in Fig. 6. We will discuss the decay of RHNs
into the SM final states in details in Sec. 5. In the remainder of the analysis in this section,
we fix the lifetime of RHNs to yield the best reach of �XX in Fig. 1 for both the future
HL-LHC and MATHUSLA displaced vertex searches, namely, �min(HL� LHC) = 20.7 and
�min(MATH) = 0.3 fb, which corresponds to c⌧ = 3.1 and 58.4 m, respectively. Here, we
identify X with the RHN while S is either h or �.

We first consider the case where h and � masses are almost degenerate, mh ' m� = 126

GeV. In this case, the total cross section �XX is given by the sum of the productions from
� and h.10 The best search reach of the displaced vertex signatures at the HL-LHC or the
MATHUSLA are expressed as

�min = �(pp ! � ! NN) + �(pp ! h ! NN)

'
⇥
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2 ✓ ⇥ BR(� ! NN) + cos
2 ✓ ⇥ BR(h ! NN)
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where we have used the approximation �h(m�) ' �h(mh). Hence, the best search reach is
expressed as a function of Y and ✓ for the fixed values of mN = 20 GeV, mh = 125 GeV and
m� = 126 GeV. In Fig. 7, our results are shown in (Y, sin ✓)-plane. This plots show (i) the
best reaches of displaced vertex searches at the HL-LHC (dashed curve) and the MATHUSLA

10 Although � and h are almost degenerate, we do not consider the interference between the processes,
pp ! � ! NN and pp ! h ! NN , since their decay width is much smaller (a few MeV) than their mass
differences. Hence, in evaluation the total cross section, we simply add the individual production cross section
in Eq. (4.11).
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phases. Using the Eqs. (5.2) and (5.3), the Dirac mass matrix is parameterized as [72]
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p
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p
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where O is a general orthogonal matrix,
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p
mN2 ,

p
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p
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p
m3).

The charged current interaction of the neutrino mass eigenstates is expressed as
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where `↵ are the 3 generations of the charged SM leptons, and PL = (1 � �5)/2 is the left
handed projection operator. Similarly, for the the neutral current interaction, we have
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where ✓W is the weak mixing angle.
With the general parameterization of Eq. (5.5), the matrix R is given by

R↵i = mD(MN)
�1

= U⇤
MNS

p
D⌫ O(

p
MN)

�1. (5.8)

In order to fix R↵i, we employ the neutrino oscillation data: sin
2
2✓13 = 0.092 [73] along

with sin
2
2✓12 = 0.87, sin2

2✓23 = 1.0, as well as the mass squared differences, �m2
12 = m2

2 �

m2
1 = 7.6 ⇥ 10

�5 eV2 and �m2
23 = |m2

3 � m2
2| = 2.4 ⇥ 10

�3 eV2 [3]. Motivated by the recent
measurements, we also fix the Dirac CP phase as � = 3⇡

2 [74], while we simply take ⇢1 = ⇢2 = 0

for the Majorana CP phases. To simplify our analysis, we set the orthogonal matrix O to be
the identity matrix and assume the mass degeneracy for three heavy neutrinos, mN1,2,3 = mN .
For the light neutrino mass spectrum, we consider two cases: the normal hierarchy (NH),
m1 < m2 < m3, and the inverted hierarchy (IH), m3 < m1 < m2.

Let us now consider the decay of the heavy neutrinos into the SM particles. In our analysis,
we set mN = 20 GeV, hence the heavy neutrino decays into the SM quarks and leptons via
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Example)	degenerate	Ns	(20	GeV)	and	O=	Id	

Figure 14: The left (right) panel shows the decay lengths of heavy neutrinos as a function of
the lightest light neutrino mass m1 (m3), for the NH (IH) case. In both panels, the dotted,
dashed, and the solid lines correspond to the decay lengths of N1, N2, and N3, respectively,
with mN = 20 GeV. In the right panel, the dotted and dashed lines are indistinguishable.

Using Eqs. (5.9), (5.11), and (5.12), we evaluate the total decay width of each heavy neutrino
(�N i). The decay length (in meters) are found to be

c⌧1 =
1

�N1
' 6.98⇥ 10

5 1

m4
N
m1

,

c⌧2 =
1

�N2
' 7.25⇥ 10

5 1

m4
N
m2

,

c⌧3 =
1

�N3
' 7.11⇥ 10

5 1

m4
N
m3

, (5.13)

where mN is in units of GeV while mi is in units of eV. The decay length c⌧i is inversely
proportional to mi because of �N i /

P3
↵=1 |R↵i|

2
=

mi
mN

. For the NH and IH cases, the decay
lengths for the heavy neutrinos N1,2,3 are plotted in Fig. 14 as a function of the lightest light
neutrino mass.

In Fig. 14, let us consider three benchmark values for the lightest light neutrino mass as
mlightest = 0.1, 0.01, and 0.001 eV. For each benchmark mlightest value, the decay lengths for the
three heavy neutrinos are fixed. It is then interesting to combine the benchmark decay lengths
with the search reach of the displaced vertex signatures at the future colliders. For the NH
case, we show in Fig. 15 the search reach cross sections with m� = 126 GeV and mN = 20 GeV
along with the heavy neutrino decay lengths for the three benchmark mlightest values (vertical
lines). The top-left, top-right and bottom panels are for mlightest = m1 = 0.1, 0.01 and 0.001
eV, respectively Interestingly, for all benchmarks, the value of c⌧3 is very close to the lifetime
yielding the best reach cross section at the MATHUSLA. Same as Fig. 15 but for the IH case
is shown in Fig. 16. The top-left, top-right and bottom panels are for mlightest = m3 = 0.1,
0.01 and 0.001 eV, respectively For all benchmarks, the value of c⌧1 is very close to the lifetime
yielding the best reach cross section at the MATHUSLA.
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lightest	light	neutrino	mass	(eV)	

*Lightest	light	neutrino	mass	à	0,	one	N_R	becomes	a	DM	
candidate	(NO	&	Seto,	PRD	89	(2010)	023507)		



General	case:	O	is	a	general	orthogonal	matrix		

Ex)	2	by	2	case	
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Choosing	a	suitable	beta	value,	we	can	adjust	the	N’s	lifetime	



(ii)	Higgs	portal	production	of	BL-like	Higgs	bosons	

Benchmark	
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addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.
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II. NON-MINIMAL QUARTIC INFLATION

In this section, we introduce the quartic inflation with non-minimal gravitational coupling

(non-minimal quartic inflation). We define the inflation scenario by the following action in the

Jordan frame:

SJ =

∫

d4x
√
−g

[

−
1

2
f(φ)R+

1

2
gµν (∂µφ) (∂νφ)− VJ(φ)

]

, (1)

where f(φ) = (1 + ξφ2), VJ(φ) is the scalar potential and the reduced Planck mass, MP =

2.44×1018 GeV, is set to be 1 (Planck unit), φ is a real scalar (inflaton), ξ > 0 is a dimensionless

and real parameter of the non-minimal gravitational coupling, and λ is a quartic coupling of

the inflaton. In the limit ξ → 0, the model is reduced to the minimal quartic inflation.

To obtain an action with a canonically normalized kinetic term for gravity in the so-called

Einstein frame, we perform a cannonical transformation of the Jordan frame metric, f(φ)gµν =

gEµν , so that

√
−g =

1

f(φ)2
√
−gE,

R = f(φ)

(

RE −
3

2
(∇lnf(φ))2

)

. (2)

The action in the Einstein frame is then given by

SE =

∫

d4x
√
−gE

[

−
1

2
RE +

1

2

(

1

f(φ)
+

6ξ2φ2

f(φ)2

)

gµνE (∂µφ) (∂νφ)−
VJ(φ)

f(φ)2

]

. (3)

Using a field redefinition,
(

dσ

dφ

)2

=
1 + ξ(6ξ + 1)φ2

(1 + ξφ2)2
, (4)

the scalar kinetic term is canonically normalized and we obtain

SE =

∫

d4x
√
−gE

[

−
1

2
RE +

1

2
gµνE (∂µσ) (∂νσ)− VE(φ(σ))

]

, (5)

where the inflaton potential in the Einstein frame in terms of the original φ is described as 1

VE =
λ

4

φ4

(1 + ξφ2)2
. (6)

Note that for large φ ≫ 1/
√
ξ, VE becomes a constant. Hence the potential is suitable for the

slow-roll inflation.

1 Due to the conformal transformation, the SM interaction terms are also scaled by 1/f(φ)2. However, since

φ ≪ 1 (in Planck units) at the vacuum, the effect of this higher dimensional operator on SM particles is

negligible.
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Table 1: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
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h φ (1)

(H†H) (2)

vBL = 100GeV; sin θ = 0.0034 mφ = 10MeV cτ ∼ 10 km Br(h → φφ) ≃ 0.35% λ ≃ 10−9VJ =
1

4
λφ4 (3)

mN = 20GeV, mh = 125GeV, mφ = 70GeV. sin θ YN (4)

Chφφ ≃ m2
h

vBL
sin θ (5)

Yf sin θ fSM fSM (6)
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[10]. As previously mentioned this conclusion can be circum-
vented by including higher order terms in the Kahler potential
[11]. This allows one to work with smaller σ values which,
in turn, yield suitably lower values for the reheat temperature
that are compatible with TeV scale supersymmetry.

In our reformulation of µ-hybrid inflation we propose to
modify the Kahler potential in a way that allows us to imple-
ment quartic inflation with non-minimal coupling to gravity
[17]. A suitable combination of X , X̄ fields, and not the field
S, drives inflation in this scenario. The inflaton has trans-
Planckian values during the slow roll epoch and eventually
reaches its present day minimum value M . As we shall see,
M can take values anywhere from 106 GeV to 1013 GeV, if
the reheat temperature Tr ! 106 GeV. Somewhat larger Tr

values, say of order 3 × 107 GeV, will allow M to reach the
GUT scale. The model also predicts observable gravity waves
with r " 0.004.

In order to implement non-minimal quartic inflation, we
employ a Lagrangian with a non-minimal Kahler potential in
the superconformal framework of supergravity [18]:

L ⊃
∫

d4θ φ†φ (−3M2
PΦ), (3)

where MP = 2.44× 1018 GeV is the reduced Planck mass,

Φ = 1−
1

3M2
P

(

|X̄ |2 + |X |2 + |S|2
)

+
1

3M2
P

γ
(

X̄X + (X̄X)†
)

+ · · · , (4)

and φ = 1 + θ2Fφ is the compensating multiplet with a su-
persymmetry breaking ⟨Fφ⟩ = m3/2 with m3/2 being grav-
itino mass. Note that Φ may include higher order terms for
S (denoted by + · · · ) to stabilize the scalar potential in the
S-direction [13].

The relevant terms in the Jordan frame Lagrangian for in-
flation are as follows:

L ⊃ −
1

2
M2

PΦR+
(

∂µX̄
)† (

∂µX̄
)

+ (∂µX)† (∂µX)

+ (∂µS)
† (∂µS)− VSUSY , (5)

where

VSUSY ⊃ κ2
∣

∣X̄X −M2
∣

∣

2
+ κ2 |S|2

(

|X̄ |2 + |X |2
)

. (6)

Now we consider the inflation trajectory along the D-flat di-
rection, ⟨X̄⟩ = ⟨X⟩, with the inflaton parametrized as X̄ =
X = (1/2)ϕ.1 During inflation the scalars S, Hu and Hd are

1 The mass of the fluctuations in the direction orthogonal to the D-flat di-
rection is estimated to be ∼ gϕ, where g is the U(1) gauge coupling. For a
sizable gauge coupling value, the scalar potential is tightly bounded in this
orthogonal direction. Hence, it is justified to choose the D-flat direction as
the inflation trajectory and parametrize it by only one field ϕ.

FIG. 1: The inflationary predictions (ns and r) in µ-hybrid inflation
for various values of ξ ≥ 0 for N0 = 50 (left solid line) and 60 (right
solid line), along with the contours for the limits at the confidence
levels of 68% (inner) and 95% (outer) obtained by the Planck 2018
measurements (Planck TT, TE, EE+lowE+lensing+BKP14) [7]. The
black points correspond to the predictions of the minimal λϕ4 infla-
tion (ξ = 0). The predicted r value approaches its asymptotic value
r ≃ 0.00419 for N0 = 50 (r ≃ 0.00296 for N0 = 60) as ξ is
increased.

at their potential minimum. Along the inflation trajectory for
ϕ ≫ M , the relevant Langrangian is simplified to be

L ⊃ −
1

2
M2

P (1 + ξϕ2)R+
1

2
gµν(∂µϕ)(∂νϕ)−

κ2

16
ϕ4, (7)

where the dimensionless parameter ξ is given by

ξ =
1

6
(γ − 1). (8)

Note that Eq. (7) is nothing but the Jordan frame Lagrangian
of λϕ4 inflation with non-minimal gravitational coupling (see,
for example, Ref. [19]).

After imposing the constraint on the amplitude of the cur-
vature perturbation

∆2
R = 2.099× 10−9 (9)

from the Planck measurements [7] with the pivot scale cho-
sen at k0 = 0.002 Mpc−1 and assuming the number of e-
foldings (N0) to be 50 or 60 as representative values, we ob-
tain the inflationary predictions as a function of ξ. The result
is shown in Figure 1, along with the Planck results. The in-
flationary predictions for various ξ values are summarized in
Table I. To satisfy the limit obtained by the Planck at 95% con-
fidence level in Figure 1, we find a lower bound on ξ = 0.0136
(ξ ≥ 0.00526), corresponding to r ≤ 0.0496 (r ≤ 0.0963) for
N0 = 50 (N0 = 60). This, in turn, yields a lower bound on κ,
namely

κ ≥ 2.54× 10−6 (1.41× 10−6). (10)

With r " 0.004 (0.003) for N0 = 50 (60), primordial gravity
waves according to this scenario lie in the observable range.

2

Planck	2018	

N	=	50,			60	

N0 = 60

ξ φ0 φe ns r α(10−4) λ

0 22.1 2.83 0.951 0.262 −8.06 1.43 × 10−13

0.00333 22.00 2.79 0.961 0.1 −7.03 3.79 × 10−13

0.0689 18.9 2.30 0.967 0.01 −5.44 6.69 × 10−12

1 8.52 1.00 0.968 0.00346 −5.25 4.62 × 10−10

10 2.89 0.337 0.968 0.00301 −5.24 4.01 × 10−8

100 0.920 0.107 0.968 0.00297 −5.23 3.95 × 10−6

1000 0.291 0.0340 0.968 0.00296 −5.23 3.94 × 10−4

N0 = 50

ξ φ0 φe ns r α(10−4) λ

0 20.2 2.83 0.941 0.314 −11.5 2.45 × 10−13

0.00527 20.0 2.77 0.955 0.1 −9.74 7.83 × 10−13

0.119 15.8 2.07 0.961 0.01 −7.70 1.96 × 10−11

1 7.82 1.00 0.961 0.00489 −7.51 6.56 × 10−10

10 2.65 0.337 0.962 0.00426 −7.49 5.70 × 10−8

100 0.844 0.107 0.962 0.00420 −7.48 5.61 × 10−6

1000 0.267 0.0340 0.962 0.00419 −7.48 5.60 × 10−4

TABLE I. Inflationary predictions for various values of ξ in the non-minimal quartic inflation for

fixed N0 = 60 and 50. Here, φ0 and φe are evaluated in the Planck units (MP = 1).

hence the U(1)X charges of fields are determined by two real parameters, xH and xΦ. Since the

charge xΦ always appears as a product with the U(1)X gauge coupling, it is not an independent

free parameter of the model, and hence we fix xΦ = 1 throughout this paper. We reproduce the

minimal B−L model as the limit of xH → 0. The limit of xH → +∞ (−∞) indicates that the

U(1)X is (anti-)aligned to the SM U(1)Y direction. The anomaly structure of the model is the

same as the minimal B−L model [9], and all the gauge and mixed-gravitational anomalies are

cancelled in the presence of the three RHNs. The covariant derivative relevant to the U(1)Y×
U(1)X gauge interaction is given by

Dµ = ∂µ − i(g1Y + g̃QX)Bµ − igXQXZ
′
µ, (11)

where in addition to the U(1)Y gauge coupling (g1) and the U(1)X gauge coupling (gX), a

new gauge coupling g̃ is introduced from a kinetic mixing between the two U(1) gauge bosons.

For simplicity, we set g̃ = 0 at the U(1)X symmetry breaking scale. Although non-zero g̃ is

generated in its renormalization group evolution toward high energies, we find that its effect

on our final results is negligible.
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N	=	60	

SU(3)C SU(2)L U(1)Y U(1)X
qiL 3 2 1/6 (1/6)xH +1/3
ui
R 3 1 2/3 (2/3)xH +1/3

diR 3 1 −1/3 (−1/3)xH +1/3
ℓiL 1 2 −1/2 (−1/2)xH −1
N i
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Table 1: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

h φ (1)

(H†H) (2)

vBL = 100GeV; sin θ = 0.0034 mφ = 10MeV cτ ∼ 10 km Br(h → φφ) ≃ 0.35% λ ≃ 10−9VJ =
1

4
λφ4 (3)

λ ≃ 10−9 → ξ ∼ O(1) (4)

mN = 20GeV, mh = 125GeV, mφ = 70GeV. sin θ YN (5)

Chφφ ≃ m2
h

vBL
sin θ (6)

1

Inflationary	predictions	are	consistent	with	Planck	2018	data		
Non-minimal	parameter	is	O(1)	à	no	unitarity	issue	

Inflaton	production	from	Higgs	decay	

NO	&	Shafi,	
PLB	787	(2018)	141	
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U(1)X gauge interaction is given by

Dµ = ∂µ − i(g1Y + g̃QX)Bµ − igXQXZ
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µ, (11)

where in addition to the U(1)Y gauge coupling (g1) and the U(1)X gauge coupling (gX), a

new gauge coupling g̃ is introduced from a kinetic mixing between the two U(1) gauge bosons.

For simplicity, we set g̃ = 0 at the U(1)X symmetry breaking scale. Although non-zero g̃ is

generated in its renormalization group evolution toward high energies, we find that its effect
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Summary	

Ø New	Physics	sector	may	be	the	SM	gauge	singlet	and	
their	couplings	with	the	SM	sector	may	be	very	weak	

Ø In	such	a	scenario,	the	Higgs	boson	is	most	likely	the	
portal	to	this	“dark	sector’’	

	
Ø Promising	signature	would	be	a	displaced	vertex	of	a	
long-lived	particle	produced	from	the	Higgs	decay.	
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Ø  Long-lived	particle	can	be	discovered	at	future	collider	
experiments	

Near/Far	future?		

To	discover	a	long-lived	particle,		
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We	have	to	be	long-lived!		


