Recent Results and Future Prospects of Higgs Physics at the LHC

Tatsuya Masubuchi

ICEPP, The University of Tokyo

HPNP2019 The 4th International Workshop on "Higgs as a Probe of New Physics"

18.-22. February 2019, Osaka University, Japan

aka Castle

LHC Run2 Status

- LHC Run2 physics program successfully finished in 2018!!
- ATLAS and CMS recorded ~150fb⁻¹ (**140fb⁻¹ for physics**) at s= $\sqrt{13}$ TeV

Pile-up increased significantly → Severe condition for experiment (higher trigger rate, performance degradation)

2

Highlight of Experimental Performance

Physics object performances are under control in <µ> 50~60!!

2019/2/17

Higgs Decay Branching Ratio

125 GeV Higgs is "miracle" → Accessible to various decay modes!!

Higgs Production at LHC

2019/2/17

Outline

- Run2 achievements (so far)
 - Higgs Yukawa sector
 - Higgs precise measurement
 - Cross section measurement (inclusive/differential, "simplified template cross section")
 - Coupling measurement (combination)
 - Higgs-pair production
 - BSM Higgs search

HL-LHC Prospect

- 125 GeV Higgs boson measurement
- Higgs-pair production
- BSM Higgs Search

	ggF	VBF	VH	ttH
H→WW	\star	\star	~	~
H→ZZ	\star	~	~	~
Н→үү	\star	~	~	\star
Н→тт	~	\star	~	~
H→bb	~	~	\star	~
Н→сс			~	
Н→µµ	V	 ✓ 		

Outline /BF ttH ggF H→WW Run2 achievements (so far) A lot of Higgs (Search/Measurement) results in Run2 \checkmark Main results using 36fb⁻¹ or 80fb⁻¹ (up to 2017 data) \rightarrow Full Run2 results (~140fb⁻¹) will come soon ✓ HL-LHC Prospect are updated based on improved Run2 analysis ased sis Impossible to cover all results (show selected(biased) results) Higgs-pair production $H \rightarrow b\overline{b}$ (comb.) BSM Higgs Search Pessimistic!! H→ττ (VBF-like) $H \rightarrow \mu \mu$ (comb.) 0 0.2 0.4

Δμ/μ

ATLAS

Candidate Event: pp→H(→bb) + Z(→ee) Run: 337215 Event: 190692294 2017-10-05 07:55:20 CEST

Run2 Recent Results (Higgs-Yukawa Sector)

Search for ttH Production

- Provide direct top-Yukawa interaction
- 13 TeV ttH cross section is ×3.8 higher than 8 TeV
- Experimentally final state is quite complex (ttH→WbWb+Higgs decay product)

Search for ttH Production

H→γγ : ATLAS, CMS update with 80fb⁻¹

- ✓ ttH events categorized by number of lepton (ttH Had, ttH Lep)
- ✓ MVA(BDT) performed for each category to discriminate from non-ttH background

ttH Observation in Run2

- Combined all decay modes
 - ttH $\rightarrow \gamma\gamma$: statistically limited
 - ttH ML, ttH→bb : systematically limited

*ttH ML, ttHγγ 80fb⁻¹ not included

Observed significance : $5.2\sigma(exp. 4.2\sigma)$ signal strength : $1.26^{+0.31}_{-0.26}$

Both experiments observed slightly high signal strength (~still 1σ level)

HPNP2019 @ Osaka

Data

Diboson

Single top

W+jets
Uncertainty
Pre-fit background

350

450

p^v_T [GeV]

300

Z+jets

VH, H \rightarrow b \overline{b} (µ=1.16)

VH. $H \rightarrow b\overline{b} \times 80$

H→bb Measurement

- VH channel is most sensitive for $H \rightarrow bb$ measurement
 - Lepton from weak boson can eliminate huge QCD background, make trigger easy (lepton and MET trigger)
 - Sensitive to High- p_T^V region (higher S/B)

p _T ∨	0lep	1lep	2lep	
ATLAS	>150 GeV	>150 GeV	75-150 GeV	>150 GeV
CMS	>170 GeV	>150 GeV	50-150 GeV	>150 GeV

MVA discriminants used to extract signal (m_{bb}, p_T^V, m_{top} and jet kinematics)

Ge

Events / 15

Data/Pred

10⁴

102

10

ATLAS

√s = 13 TeV. 79.8 fb⁻

2 leptons, 2 jets, 2 b-tags

H→bb Observation

Both experiments combined other production modes

Sensitivity is quite similar

Observed significance 5.4 σ (5.5 σ) Signal strength μ =1.01±0.12(stat.)^{+0.16}_{-0.15}(syst.)

Observed significance 5.4σ (5.5σ) Signal strength μ =1.04 \pm 0.14(stat.) \pm 0.14(syst)

13

VH Production Observation

- ATLAS claims an observation of VH production mode
 - Combined with $H \rightarrow ZZ$, $H \rightarrow \gamma \gamma$

Observed significance 5.3 (exp. 4.8 o)

Channel	Significance					
	Exp.	Obs.				
$H \to ZZ^* \to 4\ell$	1.1	1.1				
$H \rightarrow \gamma \gamma$	1.9	1.9				
$H \to b\bar{b}$	4.3	4.9				
VH combined	4.8	5.3				

VH Cross Section Measurement

 ATLAS measured "differential" cross section in the context of Simplified Template Cross Section (STXS)

Only Dimension=6 operator considered (linear+quad term)

Parameter	Expected 95% CL intervals	Observed 95% CL intervals
\bar{c}_{HW}	[-0.018, 0.004]	$[-0.019, -0.010] \bigcup [-0.005, 0.006]$
\bar{c}_{HB}	[-0.082, 0.023]	[-0.092, 0.029]
$\bar{c}_W - \bar{c}_B$	[-0.034, 0.080]	$[-0.036, -0.024] \bigcup [-0.009, 0.010]$

Measurement region	SM prediction		Result		Sta	it. Unc.	S		yst. Unc. [fb		o]			
$(y_H < 2.5, \ H \rightarrow b\bar{b})$		[fb]		[fb]		[fb]		Th. Sig.		Th. Bkg.		Exp.		
$W \rightarrow l\nu, 150 < p_{\rm T}^V < 250~{\rm GeV}$	24.0	±	1.1	20	±	25	±	17	±	2	±	13	±	9
$W \to l\nu, p_{\rm T}^V > 250 { m ~GeV}$	7.08	±	0.34	8.8	±	5.2	±	4.4	±	0.5	±	2.5	±	0.9
$Z \to ll, \nu\nu, 75 < p_{\rm T}^V < 150 {\rm GeV}$	50.6	±	4.1	81	±	45	±	35	±	10	±	21	±	19
$Z \rightarrow ll, \nu\nu, 150 < p_{\rm T}^V < 250 {\rm GeV}$	18.8	±	2.4	14	±	13	±	11	±	1	±	6	±	3
$Z \to ll, \nu\nu, p_{\mathrm{T}}^V > 250 \; \mathrm{GeV}$	4.9	±	0.5	8.5	±	4.0	±	3.7	±	0.8	±	1.2	±	0.6

5 $p_T{}^V\text{-bin}$: highest $p_T{}^V$ bin still statistically limited

15

SM Higgs (u

QCD Fit $\pm 1\sigma$ — Top

- V+Jets (μ_{.,} = 1.5)

Boosted H \rightarrow **bb analysis (ATLAS)**

> 9 5 25

Events

15

ATLAS Preliminary

√s = 13 TeV, 80.5 fb⁻

Signal Region

- Search for highly boosted $H \rightarrow$ bb associated with ISR jet
- Require two jets (R=1.0), p_T >480 GeV, 250 GeV

bh

- Higgs candidate is leading large-R jet with two b-tagged track-jets
- QCD background m₁ modeling : polynomial exponential function (validated by loose b-tagged control region)

16

2019/2/17

Search for $H \rightarrow \mu \mu$

- Direct search for interaction of Higgs with 2nd gen. fermion
- Extremely small BR($H \rightarrow \mu \mu$) : 0.022%
 - High statistics is required
 - Narrow peak $m_{\mu\mu}$ can be observed (Analysis is simple!)
 - Extract VBF-like signature by BDT categorization → Separate high S/B region

ATLAS (80fb⁻¹) **Obs. 0σ (Exp. 0.9σ)**

CMS (36fb⁻¹) **Obs 0.9σ (Exp. 1.0σ)**

Statistically limited analysis

Possible to reach to SM cross section in Run2

CMS Experiment at the LHC, CERN

Data recorded: 2011-May-25 08:00:19:229673 GMT(10:00:19 CEST) Run / Event: 165633 / 394010457

Run2 Recent Results (Measurement with bosonic channel)

18

http://iguana.cem.ch/ispy

Measurement of Higgs Properties

• $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4I$ are golden channels to measure Higgs boson precisely

<u>Н → үү</u>

- Branching Ratio ~0.2%
- Narrow m_{γγ} peak : σ~1-2GeV
- Background can be determined by data side-band

<u>H→ZZ→4I</u>

- Tiny Branching Ratio ~0.012%
- Very clean (4e, 4µ 2e2µ), high S/B ~(2/1)
- Narrow 4lepton mass peak : m_{4l} resolution

Cross Section Measurement (H\rightarrowZZ\rightarrow4I)

- Cross section measurement using Simplified Template Cross Section (STXS)
- Reconstructed event categories matches with "reduced" Stage 1 bin to maximize precision in the current statistics
 - ggF and VBF bins are divided by p_T^H and particle-level jet (p_T >30 GeV)

Measurement is still dominated by data statistics

Cross Section Measurement $(H \rightarrow \gamma \gamma)$

- Cross section measurement using Simplified Template Cross Section (STXS)
- Reconstructed event categories matches with "reduced" Stage 1bin to maximize precision in the current statistics
 - ggF and VBF bins are divided by p_T^H and particle-level jet (p_T >30 GeV)

[†]*VH*-like: $60 < m_{ii} < 120 \text{ GeV}$

Different Cross-section measurement 0000000000

- Higgs p_T is sensitive to perturbative QCD and new particle effect in loop and deviation of Yukawa coupling
 - High p_T^H is sensitive to contribution of new physics

Distribution compared to state-of-art theory predictions

Н

Higgs Global Combination

Higgs properties measure with many production and decay channel

 $\mu_i^f \equiv \frac{\sigma_i \cdot \mathbf{BR}^f}{(\sigma_i \cdot \mathbf{BR}^f)_{\mathrm{SM}}} = \mu_i \times \mu^f$

Inclusive signal strength measurement

ATLAS : $\mu = 1.13^{+0.09}_{-0.08} = 1.13 \pm 0.05(stat.) \pm 0.05(exp.)^{+0.05}_{-0.04}(sig.th.) \pm 0.03(bkg.th.)$ CMS : $\mu = 1.17 \pm 0.10 = 1.13 \pm 0.06(stat.)^{+0.05}_{-0.04}(sig.th.) \pm 0.06(other)$

Both experiments show slightly high signal strength (~1 σ level)

24

Production Cross Section

- Most generic parametrization : one signal strength for each production and decay mode (μ_i^f) (ggF, VBF, WH, ZH, ttH)×($\gamma\gamma$, ZZ, WW, TT, bb, ($\mu\mu$))
- The parameter not having sensitivity is merged or fixed in SM

ouplin	g me	asurement in κ-fra	mework
	$(\sigma \times$	$\mathbf{B})_{if} = \kappa_i^2 \sigma_i^{\mathrm{SM}} \frac{\kappa_f^2 \Gamma_f^{\mathrm{SM}}}{\kappa_H^2 \Gamma_H^{\mathrm{SM}}}$	^g cocco ggH t/b t/b t/b
Production	Effective modifier	Resolved modifier	g QQQQQ
$\sigma_{ m ggF}$	κ_g^2	$1.04\kappa_t^2 + 0.002\kappa_b^2 - 0.04\kappa_t\kappa_b$	н→үү
$\sigma_{V\mathrm{BF}}$	-	$0.73 \kappa_W^2 + 0.27 \kappa_Z^2$	interference
$\sigma_{qq/qg ightarrow ZH}$	-	κ_Z^2	
$\sigma_{gg \rightarrow ZH}$	-	$2.46\kappa_Z^2 + 0.46\kappa_t^2 - 1.90\kappa_Z\kappa_t$	$\overset{*}{} \bigvee_{\mathcal{V}}}}}}}}}}$
σ_{WH}	-	κ_W^2	t y white y
$\sigma_{t\bar{t}H}$	-	κ_t^2	
σ_{tHW}	-	$2.91\kappa_t^2 + 2.31\kappa_W^2 - 4.22\kappa_t\kappa_W$	
σ_{tHq}	-	$2.63 \kappa_t^2 + 3.58 \kappa_W^2 - 5.21 \kappa_t \kappa_W$	
$\sigma_{b\bar{b}H}$	-	κ_b^2	
Partial decay width	Effective modifier	Resolved modifier	
$\Gamma_{\gamma\gamma}$	κ_{γ}^2	$1.59\kappa_W^2 + 0.07\kappa_t^2 - 0.67\kappa_W\kappa_t$	
Γ_{ZZ}	-	κ_Z^2	g QQQQQQ
Γ_{WW}	-	κ_W^2	aaZH
$\Gamma_{ au au}$	-	$\kappa_{ au}^2$	35
Γ_{bb}	-	κ_b^2	aa→tHa
$\Gamma_{\mu\mu}$	-	κ_{μ}^2	
Γ_{gg}	κ_g^2	$1.11\kappa_t^2 + 0.01\kappa_b^2 - 0.12\kappa_t\kappa_b$	
$\Gamma_{Z\gamma}$	$\kappa^2_{(Z\gamma)}$	$1.12\kappa_W^2 - 0.12\kappa_W\kappa_t$	
Total width	Efective modifier	Resolved modifier	
Γ_H	κ_{H}^{2}	$ \begin{array}{l} (0.58\kappa_b^2 + 0.22\kappa_W^2 + 0.08\kappa_g^2 + 0.06\kappa_\tau^2 + 0.03\kappa_Z^2 + 0.03\kappa_c^2 \\ + 0.0023\kappa_\gamma^2 + 0.0015\kappa_{(Z\gamma)}^2 + 0.0004\kappa_s^2 + 0.00022\kappa_\mu^2)/(1 - \mathrm{B}_{\mathrm{BSM}}) \end{array} $	g QQQQQQQQ

26

Coupling Measurement (test of SM)

- Assuming no BSM particle in the loop (resolved $H \rightarrow \gamma \gamma$ and ggF loop)
- Parameter : reduced coupling strength modifier $(\kappa_F \frac{m_F}{n}, \sqrt{\kappa_V} \frac{m_V}{n})$

27

Coupling Measurement (effective loop)

- Test effective modifier κ_g , κ_γ
- ggF, H \rightarrow $\gamma\gamma$ induce loop in the SM $\rightarrow \kappa_g, \kappa_\gamma$ may derivate from the SM if new particle contributes to the loop induced process
- All other couplings are fixed to SM

Coupling Measurement with effective loop (with/without BSM contribution)

- $B_{BSM} = 0$: No BSM contribution to the total width
- $B_{BSM}(B_{inv}) \ge 0$: Allow BSM contribution to total width

2019/2/17

Higgs pair-production in Run2

- Search for Higgs pair production
- Destructive interference between diagrams
 - SM cross section σ(pp→HH) = 33fb(NNLO+NNLL) at 13 TeV
 - → Super tiny at LHC
 - If trilinear coupling (λ_{HHH}) deviates from SM, signal cross section $(\kappa_{\lambda} = \frac{\lambda_{HHH}}{\lambda_{HHH}^{SM}})$ can be increased/decreased
 - No unique strong channel, combine all of them

Decay	bb	YY	π	WW
bb	4b (34%)			
γγ	bbγγ (0.27%)	4γ(0.0005%)		
тт	bbтт (7.2%)	ттүү(2.9%)	4тт(0.4%)	
WW	bbWW (24%)	γγWW(0.1%)	ттWW(2.6%)	4W(4.4%)

 Sensitive channel is HH→bb+X having high branching ratio (HH→4b, bbγγ, bbττ)

final states are complicated→ Still room to improve analysis

Selected Di-higgs analysis

GeV)

Events/(5

• bbtt (ATLAS) at 36fb⁻¹

- Optimize analysis T_{lep}T_{had}, T_{had}T_{had}, separately
- Introduced BDT as final discriminants (m_{HH}, m_π, m_{bb}, MET, and angle correlation)
 → Sensitivity improved by factor of 2 from previous analysis

- bbγγ (CMS) at 36fb⁻¹
 - Perform 2D fitting (m_{jj(bb)} vs m_{yy}) to mitigate single Higgs+jets production
 - Selected 2b+2γ events are further categorized by M_{γγjj} distribution and BDT (b-tagging variable, Helicity angle and HH transverse balance)

m_{vv}r

125

GeV

125GeV

m_{ii}

 non resonance background estimated from sideband

Search for Higgs pair production in Run2

• First Run2 combined results (36fb⁻¹)

upper limit on Higgs pair production cross-section Observed 0.22 pb(exp. 0.35pb) \rightarrow 6.7(10.4) × SM -5.0 < κ_{λ} < 12.1 (-5.8 < κ_{λ} < 12.1)

Observed 22.2(12.8) × SM -11.8 < κ_{λ} < 18.8 (-7.1 < κ_{λ} < 13.6)

32

Upper limit on trilinear coupling

• Run2 combined results (36fb⁻¹)

upper limit on Higgs pair production cross-section Observed 0.22 pb(exp. 0.35pb) \rightarrow 6.7(10.4) × SM -5.0 < κ_{λ} < 12.1 (-5.8 < κ_{λ} < 12.1)

Observed 22.2(12.8) × SM -11.8 < κ_{λ} < 18.8 (-7.1 < κ_{λ} < 13.6)

33

Search for $H \rightarrow$ invisible

- ATLAS recently combined three $H \rightarrow$ invisible searches
 - Invisible BR in SM is very small $(ZZ \rightarrow 4v)$, 0.1% → any observation would be evidence of new physics
 - VBF channel gives stringent upper limit in Run2
 - MET trigger (MET_{offline} > 180 GeV), VBF topology ($\Delta \eta_{ii} > 4.8$, $m_{ii} > 1$ TeV)
 - VBF topology dominant background : $W \rightarrow lv+jets$, $Z \rightarrow vv+jets$ (estimated in the dedicated control region)

Obs. BR(H→inv) < 0.26 (exp. 0.17)@95% CL

VBF(2jet)+MET

Main production modes

 \sim

 $Z/W(\rightarrow qq/II)+MET$

Scalar WIMP

Fermion WIMP

LHC / HL-LHC Plan

• So far, no clear hint (both direct, indirect) of new physics at LHC

- HL-LHC starts ~2026, √s=14 TeV, accumulate 3000fb⁻¹ in 10 years
 We're at most only analyzing 80fb⁻¹ (~3% of total expected data!!)
- HL-LHC is Higgs factory : 180M single higgs, 110K di-higgs
 - Accessible to corner of phase space, rare production/decay mode
- Recently Yellow Report published : https://arxiv.org/abs/1902.00134
 - Cross section/coupling measurement
 - higgs pair production/BSM Higgs search

I can't cover all of them....

125 GeV Higgs Precision Measurement at HL-LHC

- Extrapolate results from Run2 analysis (36fb⁻¹ or 80fb⁻¹) to 3000fb⁻¹
 - It is not straightforward to extrapolate from inaccessible phase space in Run2

Extrapolation assumptions

- \checkmark Signal and background cross sections increase to 14 TeV
- Assume experimental condition (reconstruction eff, resolution and fake rate) is similar to Run2 (Harsh pile-up condition compensated by detector upgrade
- ✓ Assume enough MC statistics → neglect MC stat.

Baseline for systematic uncertainties (Reduced systematic : S2)

- ✓ Signal and background theory systematic uncertainties are halved
- ✓ Experimental systematic uncertainties → Reduced
- ✓ Luminosity uncertainty $2.5\% \rightarrow 1.0\%$

→ Not precise extrapolation but reasonable assumptions

- Several exceptions :
- $\checkmark\,$ PDF uncertainty reduced more than half
- ✓ HH analysis consider acceptance increase of b-tagging |η|<2.5 → |η|< 4.0

-	0	D 0	D
Source	Component	Run 2 uncertainty	Projection minimum uncertainty
Muon ID		1-2%	0.5%
Electron ID		1-2%	0.5%
Photon ID		0.5–2%	0.25–1%
Hadronic tau ID		6%	2.5%
Jet energy scale	Absolute	0.5%	0.1-0.2%
	Relative	0.1–3%	0.1-0.5%
	Pileup	0-2%	Same as Run 2
	Method and sample	0.5–5%	No limit
	Jet flavour	1.5%	0.75%
	Time stability	0.2%	No limit
Jet energy res.		Varies with p_{T} and η	Half of Run 2
MET scale		Varies with analysis selection	Half of Run 2
b-Tagging	b-/c-jets (syst.)	Varies with $p_{\rm T}$ and η	Same as Run 2
	light mis-tag (syst.)	Varies with p_{T} and η	Same as Run 2
	b-/c-jets (stat.)	Varies with p_{T} and η	No limit
	light mis-tag (stat.)	Varies with p_{T} and η	No limit
Integrated lumi.		2.5%	1%

125 GeV Higgs Precision Measurement at HL-LHC

Combination of ATLAS and CMS results based on extrapolation from Run2

2-5% precision@3000fb⁻¹ : 5-10 times better than Run2 ttH dominated by signal+bkg theory uncertainty

Higgs Branching Fraction (S2)

Coupling Measurement at HL-LHC

Combination of ATLAS and CMS extrapolation from Run2 analysis

* Expected uncertainty on κ-framework (coupling modifiers)

Dominant coupling modifier parameters can be measured **2-4%** level (limited by theoretical systematic)

Statistically limited

Differential cross section measurement at HL-LHC

• p_T^H measurement combined $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ, H \rightarrow bb$

3-6% accuracy in $p_T^H < 600 \text{ GeV}$ ~18% $p_T^H > 600 \text{ GeV}$ (stat dominant)

- p_T^H measurement in ttH+tH production using H $\rightarrow \gamma\gamma$
- Single Higgs production is also sensitive to self-coupling → indirect measurement
 - p_T^H distribution depends on on $\kappa_{\lambda} = \frac{\lambda_{HHH}}{\lambda_{HHH}^{SM}}$

68% Confidence interval $-2 < \kappa_{\lambda} < 5.5$ Complimentary with the direct dihiggs production Н

ЛННН

30

Di-Higgs/Higgs Self-coupling at HL-LHC

 ATLAS Combined analysis : HH→4b, bbττ, bbγγ

Combined measurement (with systematic) Expected Sensitivity 3.0σ uncertainty on μ 40% (1.0±0.4) 68% Confidence interval on κ_{λ} 0.25 < κ_{λ} < 1.9 CMS Combined analysis : HH→4b, bbττ, bbγγ, bbVV, bbZZ

68% confidence interval on κ_{λ} 0.35 < κ_{λ} < 1.9

Di-Higgs/Higgs Self-coupling at HL-LHC

41

BSM Higgs Search at HL-LHC

- Heavy Higgs Search ($\Phi \rightarrow \tau \tau$) extrapolated from Run2 (36fb⁻¹)
- 4 signal region : (ggF, b-associated production) \times ($\tau_{had}\tau_{had},$ $\tau_{had}\tau_{had})$
- Much larger parameter space over Run2 exclusion has 5σ sensitivity

Summary

- Run2 Higgs analysis already made great achievement in 36fb⁻¹/80fb⁻¹
 - H \rightarrow bb observation : **5.4** σ (ATLAS), **5.4** σ (CMS)
 - ttH observation : 5.8 σ (ATLAS), 5.2 σ (CMS)
 - VH observation : 5.3σ (ATLAS)
 - → Earlier than expectation from Run2
- HL-LHC prospects show lot of promising Higgs results
 - Precision measurement of cross section/coupling : 2-5% level
 - Significant increase of search sensitivity for rare production/decay : Higgs pair production ~4σ (κ_λ=1) in ATLAS+CMS combination
- We don't analysis full Run2 data yet!! ③
 - 36fb⁻¹/80fb⁻¹ → 140fb⁻¹ (×4/×1.8 more data!!)
 - Still many improvements of analysis techniques (e.g. ML)

Many full Run2 results will come in 2019!!

Run: 303079 Event: 197351611 2016-07-01 05:01:26 CEST

Back up

ttH→γγ Categorization

- BDT input variables does not have correlation with m_{vv}
 - lep : jet and lepton 4 momentum, photon 4 momentum ($p_T/m_{\gamma\gamma}$ instead of p_T)
 - had : jet 4 momentum (up to 6jets), b-tagging information, photon 4 momentum
- Background modeling from m_{\gamma\gamma} sideband (105 GeV < m_{\gamma\gamma} < 120 GeV, 130 GeV < m_{\gamma\gamma} < 160 GeV)
- Signal region keep 85%(97%) ttH signal, reject 89%(43%) non-resonant background

Search for ttH Production

- H→ multi-lepton : CMS update with 80⁻¹
- Category with 2lep(same-sign), 3lep has best significance

BDT discriminant is used to extract signal

- lepton kinematics
- jet multiplicity
- ΔR(lep-jet)

ttV(V) background

→ constrain with control region (low jet multiplicity, Z region)
 Fake background
 → dominant systematic

source

ttH Multi-Lepton

- BDTs have been trained separately for each channel including τ_h
- MVA with kinematic variables, hadronic top tagger (D_{thad}^{max}) , jet tagger (D_{Hj}^{max}) is used in $2I_{ss}$
 - Two discriminant ttH vs ttV, ttH vs ttbar)

Category	$1\ell + 2\tau_h$	$2\ell ss + 1\tau_h$	$2\ell + 2\tau_h$	$3\ell + 1\tau_h$	2	2lss		3ℓ
					tt	ttV	tt	ttV
Leading ℓ cone p_T	Х		х	Х		Х		Х
Trailing ℓ cone p_T		х		х		х		x
Minimum of $\Delta R(\text{leading } \ell, j)$	х	х	х	х	х	х	х	х
Minimum of $\Delta R(\text{trailing } \ell, j)$		X			x	X	х	x
ΔR (leading ℓ , trailing ℓ		х		х				
Transverse Mass of leading ℓ	х	х			х	х	х	x
Transverse Mass of trailing ℓ		х						
Maximum $ \eta $ of ℓ collection		х		х	х	х	х	х
Signal leading $\ell \times$ signal trailing ℓ			х					
Average of $\Delta R(jj)$	х	Х	х					
Number of jets ($p_{\Upsilon} > 25$ GeV)		х		х	х	х	х	х
Number of loose b-jets	х		х					
Mass of leading medium b-jet pair		Х						
Mass of leading loose b-jet pair				х				
E_T^{miss}	х	х		х				
res-hTT	Х	Х			3	<u>ې</u>		
Hadronic t pr	х	х						
$\mathcal{D}_{ ext{thad}}^{ ext{max}}$ $\mathcal{D}_{ ext{Hj}}^{ ext{max}}$					х	x		
Leading $\tau_h p_T$	х	Х	х	Х				
Trailing $\tau_h p_T$	х		х					
Mass of leading τ_h + trailing τ_h	х		х					
$\Delta R(\text{leading } \tau_h, \text{trailing } \tau_h)$	х		х					
$cos(\theta)^*$ (leading τ_h , trailing τ_h)	х		х					
Minimum of $\Delta R(\text{leading } \tau_{h'} j)$	х	X		X				
Minimum of $\Delta R(\text{trailing } \tau_{h}, j)$	х							
Minimum of $\Delta R(\tau_{\rm h}, j)$			х					
Mass of leading ℓ + leading τ_h				Х		а. С		
Mass of trailing ℓ + leading τ_h		х		х				
ΔR (leading ℓ , leading τ_h)	х	X						
$\Delta R(\text{trailing } \ell, \text{leading } \tau_h)$		х						
$\Delta R(\ell, \tau_h)$ for same-sign pair of (ℓ, τ_h)	х							
Average of $\Delta R(\ell, \tau_h)$			х					
MEM							х	X
Number of variables	17	18	13	12	6	8	6	8

VH Higgs Effective Lagrangian

Strongly Interacting Light Higgs basis

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \bar{c}_{i} O_{i} \equiv \mathcal{L}_{SM} + \Delta \mathcal{L}_{SILH} + \Delta \mathcal{L}_{F_{1}} + \Delta \mathcal{L}_{F_{2}}$$

$$\begin{split} \Delta \mathcal{L}_{SILH} &= \frac{\bar{c}_H}{2v^2} \partial^{\mu} \big(H^{\dagger} H \big) \partial_{\mu} \big(H^{\dagger} H \big) + \frac{\bar{c}_T}{2v^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) \Big(H^{\dagger} \overleftarrow{D}_{\mu} H \Big) - \frac{\bar{c}_6 \lambda}{v^2} \left(H^{\dagger} H \right)^3 \\ &+ \left(\left(\frac{\bar{c}_u}{v^2} y_u H^{\dagger} H \bar{q}_L H^c u_R + \frac{\bar{c}_d}{v^2} y_d H^{\dagger} H \bar{q}_L H d_R + \frac{\bar{c}_l}{v^2} y_l H^{\dagger} H \bar{L}_L H l_R \right) + h.c. \\ &+ \frac{i \bar{c}_W g}{2m_W^2} \left(H^{\dagger} \sigma^i \overleftarrow{D^{\mu}} H \right) \left(D^{\nu} W_{\mu\nu} \right)^i + \frac{i \bar{c}_B g'}{2m_W^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) \left(\partial^{\nu} B_{\mu\nu} \right) \\ &+ \frac{i \bar{c}_{HW} g}{m_W^2} \left(D^{\mu} H \right)^{\dagger} \sigma^i (D^{\nu} H) W_{\mu\nu}^i + \frac{i \bar{c}_{HB} g'}{m_W^2} \left(D^{\mu} H \right)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{\bar{c}_{\gamma} g'^2}{m_W^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{\bar{c}_g g_S^2}{m_W^2} H^{\dagger} H G_{\mu\nu}^a G^{a\mu\nu} \,, \end{split}$$

Boosted H→bb analysis ATLAS

- High p_T Higgs (p_T^H) is sensitive to new physics
- $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4I$ cross section is too small to access high p_T^H due to low statistics
 - 29fb with $p_T^H > 400 \text{ GeV}$
 - $(pp \rightarrow H+X)*BR(H \rightarrow bb)$: 17fb : 2000events
 - $(pp \rightarrow H+X)^* BR(H \rightarrow \gamma \gamma) : 0.07 \text{fb} \sim 10 \text{ events}$
 - $(pp \rightarrow H+X)^* BR(H \rightarrow ZZ \rightarrow 4I) : 0.0003 fb \sim 0.01 events$
- Selection
 - at least two larger-R (Anti- k_t , R=1.0) jets, p_T>480(250) GeV \leftarrow trigger requirement
 - Signal Region : Require 2 b-tagging (WP : 77% eff)
 - Control Region : no b-tagging
- Signal/Background component
 - ggF is dominant but VBF/VH is not negligible
 - $Z(\rightarrow bb)$ is dominant resonant background in SR

o eff)			
		CR _{QCD}	SR
V	Z + jets	0.28	0.80
v + jets	W + jets	0.72	0.20
	All hadronic	0.58	0.63
++	Semi-leptonic	0.38	0.34
11	Dileptonic	0.04	0.03
	ggF	0.49	0.53
$U \rightarrow b\bar{b}$	VBF	0.17	0.25
$\Pi \rightarrow UU$	WH	0.21	0.12
	7 <i>H</i>	0.12	0.10

Boosted H→bb analysis (ATLAS)

- Background estimation
 - Non resonant QCD background : parametric function
 - ➔ function is validated in CR_{QCD} data
 - Z/W+jets : m_J shape from MC, normalization fitted to data
 - ttbar : MC with extra scale factor from $\mathsf{CR}_{\mathsf{ttbar}}$
 - CR_{ttbar} µ+jets events (90% pure ttbar events)
 - Estimated normalization factor 0.84
- Systematic uncertainty
 - Higgs theory uncertainty (p_T V>400 GeV) ~30%
 - Experimental uncertainty : jet energy/mass scale and mass resolution, b-tagging

		Impact on Signals $(\sqrt{\Delta\sigma^2}/\mu)$						
Source	Туре	V+jets	Higgs	Z' (100 GeV)	Z' (175 GeV)			
Jet energy and mass scale	Norm. & Shape	15%	14%	23%	18%			
Jet mass resolution	Norm. & Shape	20%	17%	30%	20%			
V + jets modeling	Shape	9%	4%	4%	< 1%			
$t\bar{t}$ modeling	Shape	< 1%	1%	< 1%	11%			
b-tagging (b)	Normalisation	11%	12%	11%	15%			
b-tagging (c)	Normalisation	3%	1%	3%	5%			
b-tagging (l)	Normalisation	4%	1%	4%	7%			
$t\bar{t}$ scale factor	Normalisation	2%	3%	2%	58%			
Luminosity	Normalisation	2%	2%	2%	3%			
Alternative QCD function	Norm. & Shape	4%	4%	3%	17%			
W/Z and QCD (Theory)	Normalisation	14%	—	—	_			
Higgs (Theory)	Normalisation	-	30%	_	_			

Search for H→cc (and Prospect)

- Direct search for the interaction of Higgs with 2nd generation fermion
 - BR(H→cc) ~2.9%
- Analyzed only VH→IIcc channel
 - Dedicated c-tagging algorithm : c-tag eff 41%, b-jet eff 25%, light eff 5%
 - Final discriminant : m_{cc} (tighter selection than VH \rightarrow IIbb analysis)

No significant excess in 36fb⁻¹

95% CL upper limit on $\sigma(pp \rightarrow ZH)^*BR(H \rightarrow bb)$ 2.7pb (still 100 × higher than SM)

HL-LHC prospect (3000fb⁻¹)

95% CL upper limit on signal strength $\mu_{ZH(cc)}$ <6.3

* Analysis improvement is required (c-tagging, MVA)

Property Measurement

STXS measurement

Expected Composition

Nicely separate targetting signal process 0j- p_T^{4l} -High category : require N_{jet}=0 p_T^{4l} >100 GeV → enhance VH→Iv(missed lepton)4I and vv4I

Mass Measurement (ATLAS)

- Mass measurement in Run2 ($H \rightarrow \gamma\gamma$, $H \rightarrow ZZ \rightarrow 4I$)
 - H→γγ : dominated by systematics (EM calorimeter response, material)
 - $H \rightarrow ZZ \rightarrow 4\mu$: dominated by statistics (μ resolution is excellent)

STXS Combined measurement

Stage 0 STXS measurement (CMS)

- Stage 1 STXS measurement (CMS)
 - mainly for ggF and VBF (no sensitivity for VH and ttH yet)
 - Merged several blocks depending on the current sensitivty

2019/2/17

Differential Cross Section Measurement

• ATLAS $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ \rightarrow 4I$ (80fb⁻¹)

Compare to state-of-art theory prediction

No significant deviation from theory found

Combined Measurement (X-sec)

• CMS

• ATLAS

Process	Value		Uı	ncertaint	SM pred.	Significance		
$(y_H < 2.5)$	[pb]	Total	Stat.	Stat. Exp. Sig. th. Bkg. th.				obs. $(exp.)$
ggF	47.8	± 4.0	(± 3.1)	$^{+2.7}_{-2.2}$	± 0.9	± 1.3)	44.7 ± 2.2	-
VBF	4.25	$^{+0.77}_{-0.74}$	(± 0.63)	$^{+0.39}_{-0.35}$	$^{+0.25}_{-0.21}$	$+0.14 \\ -0.11$	3.515 ± 0.075	6.5~(5.3)
WH	1.89	$^{+0.63}_{-0.58}$	$\begin{pmatrix} +0.45 \\ -0.42 \end{pmatrix}$	$^{+0.29}_{-0.28}$	$^{+0.25}_{-0.16}$	$^{+0.23}_{-0.22}$	1.204 ± 0.024	
ZH	0.59	$^{+0.33}_{-0.32}$	$\begin{pmatrix} +0.27 \\ -0.25 \end{pmatrix}$	± 0.14	$^{+0.08}_{-0.02}$	± 0.11)	$0.794_{-0.027}^{+0.033}$	$\left\{\begin{array}{c} 4.1 \ (3.7) \end{array}\right\}$
$t\bar{t}H+tH$	0.71	± 0.15	(± 0.10)	± 0.07	$^{+0.05}_{-0.04}$	$^{+0.08}_{-0.07}$	$0.586^{+0.034}_{-0.050}$	5.8(5.3)

Production process	Best fit value		Uncertainty	
			stat.	syst.
ggH	1.22	$^{+0.14}_{-0.12} \\ (^{+0.11}_{-0.11})$	$^{+0.08}_{-0.08} \\ (^{+0.07}_{-0.07})$	$^{+0.12}_{-0.10} \\ (^{+0.09}_{-0.08})$
VBF	0.73	$^{+0.30}_{-0.27} \\ (^{+0.29}_{-0.27})$	$^{+0.24}_{-0.23} \\ (^{+0.24}_{-0.23})$	$^{+0.17}_{-0.15} \\ (^{+0.16}_{-0.15})$
WH	2.18	$^{+0.58}_{-0.55} \\ (^{+0.53}_{-0.51})$	$^{+0.46}_{-0.45} \\ (^{+0.43}_{-0.42})$	$^{+0.34}_{-0.32} \\ (^{+0.30}_{-0.29})$
ZH	0.87	$^{+0.44}_{-0.42} \\ (^{+0.43}_{-0.41})$	$^{+0.39}_{-0.38} \\ (^{+0.38}_{-0.37})$	$^{+0.20}_{-0.18} \\ (^{+0.19}_{-0.17})$
ttH	1.18	$^{+0.30}_{-0.27}$ $\binom{+0.28}{-0.25}$	$^{+0.16}_{-0.16} \\ (^{+0.16}_{-0.15})$	$^{+0.26}_{-0.21} \\ (^{+0.23}_{-0.20})$
Decay mode	Best fit value		Uncertainty	
			stat.	syst.
$H \to bb$	1.12	$^{+0.29}_{-0.29} \\ (^{+0.28}_{-0.27})$	$^{+0.19}_{-0.18} \\ (^{+0.18}_{-0.18})$	$^{+0.22}_{-0.22} \\ (^{+0.21}_{-0.20})$
$H \to \tau \tau$	1.02	$^{+0.26}_{-0.24} \\ \left(^{+0.24}_{-0.22} \right)$	$^{+0.15}_{-0.15} \\ (^{+0.15}_{-0.14})$	$^{+0.21}_{-0.19} \\ (^{+0.19}_{-0.17})$
$\mathrm{H} \rightarrow \mathrm{WW}$	1.28	$^{+0.17}_{-0.16} \\ (^{+0.14}_{-0.13})$	$^{+0.09}_{-0.09} \\ (^{+0.09}_{-0.09})$	$^{+0.14}_{-0.13} \\ (^{+0.11}_{-0.10})$
$H \to ZZ$	1.06	$^{+0.19}_{-0.17} \\ (^{+0.18}_{-0.16})$	$^{+0.16}_{-0.15} \\ (^{+0.15}_{-0.14})$	$^{+0.11}_{-0.08} \\ (^{+0.10}_{-0.08})$
$H ightarrow \gamma \gamma$	1.20	$^{+0.18}_{-0.14} \\ (^{+0.14}_{-0.12})$	$^{+0.13}_{-0.11} \\ (^{+0.10}_{-0.10})$	$^{+0.12}_{-0.09} \\ (^{+0.09}_{-0.07})$
$\mathrm{H} \to \mu \mu$	0.68	$^{+1.25}_{-1.24} \\ (^{+1.20}_{-1.17})$	$^{+1.24}_{-1.24} \\ (^{+1.18}_{-1.17})$	$^{+0.13}_{-0.11} \\ (^{+0.19}_{-0.03})$

<u>56</u>

Combined Measurement (к)

Parameter	(a) no BSM	(b) with BSM
κ_Z	1.07 ± 0.10	restricted to $\kappa_Z \leq 1$
κ_W	1.07 ± 0.11	restricted to $\kappa_W \leq 1$
κ_b	$0.97\substack{+0.24 \\ -0.22}$	$0.85\substack{+0.13 \\ -0.14}$
κ_t	$1.09\substack{+0.15 \\ -0.14}$	$1.05\substack{+0.14 \\ -0.13}$
$\kappa_{ au}$	$1.02\substack{+0.17\\-0.16}$	0.95 ± 0.13
κ_γ	$1.02\substack{+0.09 \\ -0.12}$	$0.98\substack{+0.05 \\ -0.08}$
κ_g	$1.00\substack{+0.12\\-0.11}$	$0.97\substack{+0.10 \\ -0.09}$
B_{BSM}	-	< 0.26 at 95% CL

ATLAS

BSM combination

Parameter constraint for 2HDM

Coupling scale factor	Туре І	Type II	Lepton-specific	Flipped		
KV	$\sin(\beta - \alpha)$					
Ku	$\cos(\alpha)/\sin(\beta)$					
Kd	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$		
κ _ℓ	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$		

5<u>8</u>

Higgs Pair Production

• Acceptance Dependence as a function of κ_{λ}

Search for DiHiggs Resonance

Dihiggs resonance combined results

Cross section limit (95% CL) 0.83pb at 260 GeV 0.02pb at 1TeV Cross section limit (95% CL) 0.83pb at 260 GeV 0.02pb at 1TeV

LH-LHC Differential Cross Section

- Combined $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$
- Highest p_T^H bin (p_T^H >350 GeV)

8 % accuracy (still stat limited) in $p_T^H > 350 \text{ GeV}$ Boosted H \rightarrow bb channel will improve high- p_T stat 350 p_T^{j1} [GeV] 2019/2/17

DiHiggs Extrapolation from Run2

- HH→4b channel (ATLAS)
 - Extrapolating from Run2 analysis of 24.3fb⁻¹
 - 8% improvement of b-tagging eff is applied
 - QCD multi-jet background (95% of total)
 - ➔ assessed using data-driven technique
 - → largest systematic source of this analysis

Trigger in HL-LHC is crucial if jet threshold increase from 40 to 75 GeV, sensitivity down by 50%

1.4 σ (without systematic), 0.6 σ (with Run2 sys)

DiHiggs at HL-LHC

- bbtt (most sensitive analysis in Run2)
 - $bbT_{lep}T_{had}$, $bbT_{had}T_{had}$ analyzed separately
 - BDT trained with κ_{λ} =20 (softer m_{HH} distribution) \rightarrow not fully optimal
 - MC stat uncertainty neglected
 - 2.1 σ with baseline systematic scenario

- bbtt (most sensitive analysis in Run2)
 - truth level particle studies convoluted with smearing
 - Higgs pair : single Higgs : bkg = 2:1:1
 - BDT trained with $\kappa_{\lambda}{=}1$
 - 2.0 σ with systematic

Measurement at HL-LHC

g

- Indirect κ_c measurement using ggF Higgs p_T differential measurement
 - if charm Yukawa coupling is enhanced, p_T^H spectrum would be softer
 - Differential cross section measurement of $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4I$ can be used to constraint the charge Yukawa (κ_c)

- no BSM particle in the loop
- with/without coupling dependence on the branching fraction

DiHiggs (HE-LHC Projection)

- HE-LHC : 27 TeV, 15ab⁻¹
- Combination of bbγγ and bbττ
- Expected uncertainty on κ_λ ~10-20%

