$\mathcal{H}iggs \ \mathcal{P}air \ \mathcal{P}roduction \ in \ the \ \mathcal{SM} \ and \ \mathcal{B}eyond$

Milada Margarete Mühlleitner (KIT)

HPNP 2019 'Higgs as a Probe of New Physics' Oksaka University, 18-22 Feb 2019

\mathcal{O} utline

- ♦ Motivation for Higgs pair production
- \diamond Higher-order corrections to Higgs pair production
 - $\ast\,$ Mass effects at NLO
- ♦ Di-Higgs production beyond the Standard Model
 - * New physics effects
- ♦ Di-Higgs production in sample benchmark models
 - $\ast\,$ C2HDM and NMSSM
- ♦ Higgs self-couplings and baryogenesis
 - * In the C2HDM
- $\diamond \ {\rm Conclusions}$

Disclaimer: Main focus on own work

\mathcal{M} otivation

$\mathcal{M}otivation \ \mathcal{H}iggs \ \mathcal{P}air \ \mathcal{P}roduction$

- Higgs Discovery ~> New Era of Particle Physics
 - Structurally completes SM, self-consistent framework to describe physics up to the Planck scale
- SM Higgs couplings:
 - $g_{Hf\bar{f}} \sim \frac{m_f}{v}$ and $\sqrt{g_{HVV}} \sim \frac{m_V}{v}$
- Higgs self-coupling strength:
 - still unknown

[ATLAS/CMS, JHEP08(2016)045]

M.M.Mühlleitner, 18 Feb 2019, HPNP 2019, Osaka University

The EWSB potential:

$$V(H) = \frac{1}{2!}\lambda_{HH}H^2 + \frac{1}{3!}\lambda_{HHH}H^3 + \frac{1}{4!}\lambda_{HHHH}H^4$$

${\mathcal T}$ rilinear coupling	$\lambda_{HHH} = 3 \frac{M_H^2}{v}$	
$\mathcal Q$ uartic coupling	$\lambda_{HHHH} = 3 \frac{M_H^2}{v^2}$	· · · · · · · · · · · · · · · · · · ·

${\cal M}$ easurement of the scalar boson self-couplings $ ightarrow$	\mathcal{E} xperimental verification
and	\mathcal{O} f the scalar sector of the
${\cal R}$ econstruction of the EWSB potential	${\cal E}{\sf WSB}$ mechanism

Determination of the scalar boson self-couplings at colliders:

λ_{HHH}	via pair production
λ_{HHHH}	via triple production

radiation off W/Z, $t\bar{t}\text{, }WW/ZZ$ fusion, gg fusion

$\mathcal{D}ouble \ \mathcal{H}iggs \ \mathcal{P}roduction \ \mathcal{P}rocesses$

Baglio, Djouadi, Quevillon

M.M.Mühlleitner, 18 Feb 2019, HPNP 2019, Osaka University

$\mathcal{H}igher\text{-}\mathcal{O}rder\ \mathcal{C}orrections$

$\mathcal{M}ain \ \mathcal{P}roduction \ \mathcal{C}hannel \ at \ the \ \mathcal{LHC}$

• Gluon fusion: loop induced, third generation dominant $\rightsquigarrow t, b$

• NLO QCD corrections (HTL): ~ 90 - 100% $[M_H^2 \ll 4m_t^2, \mu = M_{HH}]$

[Dawson, Dittmaier, Spira]

Status Higher Order Corrections

• 2-loop QCD corrections large top mass expansion, $\pm 10\%$ Grigo, Hoff, Melnikov, Steinhauser Frederix, Frixione, Hirschi, Maltoni, • NLO mass effects @ NLO $\sim -10\%$ Mattelaer, Torrielli, Vryonidou, Zaro in real corrections de Florian.Mazzitelli: $M_{H}^{2} \ll 4m_{t}^{2}, \sim 20\%$ NNLO QCD corrections Grigo, Melnikov, Steinhauser $M_{H}^{2} \ll 4m_{t}^{2}, \sim 10\%$ Shao, Li, Li, Wang; • Soft gluon resummation de Florian, Mazzitelli Davies, Mishima, $Q^2 \gg m_t^2$ • NLO: small quark mass exp. Steinhauser, Wellmann Grazzini, Heinrich, Jones, NNLO Monte Carlo full top-mass effects @ NLO, Kallweit, Kerner, Lindert, Mazzitelli +10 to +20% in distributions Heinrich, Jones, Kerner, • At NI O matching to parton showers Luisoni, Vryonidou

$\mathcal{F}ull \ \mathcal{N}LO \ \mathcal{C}alculation$

• Full NLO calculation: top only

Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke

numerical integration, sector decomposition, tensor reduction, contour deformation

14TeV:
$$(m_t = 173 \text{GeV})$$
 $\sigma_{\text{NLO}} = 32.91(10)^{+13.8\%}_{-12.8\%}$ fb
 $\sigma_{\text{NLO}}^{\text{HTL}} = 38.75^{+18\%}_{-15\%}$ fb (\leftarrow HPAIR)

 \Rightarrow -15% mass effects on top of LO

• New expansion/extrapolation methods: (i) $1/m_t^2$ expansion + conformal mapping + Padé aprroximants (ii) p_T^2 expansion Bonciani,Degrassi,Giardino,Gröber

• Full NLO calculation: top only first independent cross-check

Baglio,Campanario,Glaus MM,Spira,Streicher

 $\rightarrow T$

 $\rightarrow T$

numerical integration, IR subtraction, no tensor reduction, Richardson extrapolation

14TeV:
$$(m_t = 172.5 \text{GeV})$$
 $\sigma_{\text{NLO}} = 32.78(7)^{+13.5\%}_{-12.5\%}$ fb
 $\sigma_{\text{NLO}}^{\text{HTL}} = 38.66^{+18\%}_{-15\%}$ fb (\leftarrow HPAIR)

 \Rightarrow -15% mass effects on top of LO

NLO $gg \rightarrow HH$ with \mathcal{F} ull \mathcal{M} ass \mathcal{D} ependence

Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke, Phys. Rev. Lett. 117 (2016) 1

Red: full result w/ mass dependence; blue/green approximations; scale variation: $\mu = (0.5...2)m_{hh}/2$ See also [Borowka eal, JHEP 1610(2016)107]

NLO $gg \rightarrow HH$ with \mathcal{F} ull \mathcal{M} ass \mathcal{D} ependence

Baglio, Campanario. Glauss, MM, Streicher, Spira '18

- independent cross-check; completely different methods; no fixed masses
- first untertainty estimate due to scheme and scale choice of top-quark mass

$\mathcal{D}ependence \text{ on } \mathcal{H}iggs \ \mathcal{S}elf\text{-}\mathcal{C}oupling$

Baglio, Djouadi, Gröber, MM, Quevillon, Spira

• threshold region sensitive to λ ; large M_{HH} sensitive to New Physics • $gg \rightarrow HH$: $\frac{\Delta\sigma}{\sigma} \sim -\frac{\Delta\lambda}{\lambda}$; decreasing with M_{HH}^2

$\mathcal{C}hallenge \ \mathcal{D}i\text{-}\mathcal{H}iggs \ \mathcal{P}roduction$

• Small signal + large QCD background \rightsquigarrow Experimental challenge! $\mathcal{O}(\pm(15-20)\lambda_{HHH}^{SM})$ [ATLAS,CMS]

• Prospects in $b\bar{b}\gamma\gamma$ final state: $-0.8 < \lambda_{hhh}/\lambda_{hhh}^{SM} < 7.7$

[ATL-PHYS-PUB-2017-001]

M.M.Mühlleitner, 18 Feb 2019, HPNP 2019, Osaka University

$\mathcal{B}SM \ \mathcal{H}iggs \ \mathcal{P}air \ \mathcal{P}roduction$

$\mathcal{D}i\text{-}\mathcal{H}iggs \ \mathcal{P}roduction \ \mathcal{B}eyond \ the \ \mathcal{S}M$

• Beyond SM HH production: Cross sections can be considerably larger: ex.: composite Higgs * different λ_{3H} ; * novel couplings; * novel particles in the loop; * resonant enhancement

$\mathcal{D}i\text{-}\mathcal{H}iggs \ \mathcal{P}roduction \ \mathcal{B}eyond \ the \ \mathcal{S}M$

• Beyond SM HH production: Cross sections can be considerably larger: ex.: NMSSM

* different λ_{3H} ; * novel couplings; * novel particles in the loop; * resonant enhancement

$\mathcal{D}i\text{-}\mathcal{H}iggs \ \mathcal{P}roduction \ \mathcal{B}eyond \ the \ \mathcal{S}M$

- How large can λ_{3H} be? $\lambda_{3H} = \kappa_{\lambda} \lambda_{3H}^{SM}$
 - $|\kappa_{\lambda}| \leq 6$ [Di Luzio, Grober, Spannowsky, 1704.02311]
 - $|\kappa_{\lambda}| \leq 6$ [Di Vita, Grojean, Panico, Riembau, Vantalon, 1704.01953]
 - $\kappa_\lambda \leq 5/3$ [Kurup, Perelstein, 1704.03381]
 - $|\kappa_{\lambda}| \leq 10$ [Falkowski, Rattazzi]

• Expect the unexpected:

- ∗ Higgs-to-Higgs cascade decays in non-minimal Higgs sectors →
 Exotic multi-fermion and/or multi-photon final states
- * Example NMSSM benchmark point BP7_P2

$$gg \to A_2 \to H_s A_1 \to A_1 A_1 A_1 \to bb + 4\gamma \qquad 13.12 \text{fb}$$

$$gg \to A_2 \to H_s A_1 \to A_1 A_1 A_1 \to 4b + 2\gamma \qquad 84.78 \text{fb}$$

[King, MM, Nevzorov, Walz]

\mathcal{H} igher- \mathcal{O} rder \mathcal{C} orrections - \mathcal{B} eyond the $\mathcal{S}M$

• Higher-order corrections to σ_{hh} :

- for higher-order corrections for BSM Higgs pair production, see
 [Dawson,Dittmaier,Spira; Agostini,Degrassi,Gröber,Slavich; Dawson,Lewis;
 Gröber,MM,Spira,Streicher; Gröber,MM,Spira; Hespel,Lopez-Val,Vryonidou; Moyoti eal; ...]
- available in large loop particle mass limit
- $K\text{-}\mathsf{factor}$ typically of $\mathcal{O}(1.5-2)$
- new physics effects on K-factors in general small
- new physics effects on absolute cross section large

• Higher-order corrections to triple Higgs couplings: and Higgs-to-Higgs decays

[Hollik,Penaranda; Dobado eal; Arhrib eal; Aoki eal; Kanemura eal; Senaha; Spira,Brucherseifer; Nhung,MM,Streicher,Walz; MM,Nhung,Ziesche; Krause,Santos,MM,Ziesche; Braathen eal; ...]

```
implementation in tools: H-COUP (renorm. Higgs couplings)[Kanemura,Kikuchi,Sakurai,Yagyu]2HDECAY (HO decays)[Krause,MM,Spira]
```

$\mathcal{N}\text{ew} \ \mathcal{T}\text{ool} \ 2\mathcal{H}\text{DECAY}$

• 2HDECAY:

[Krause, MM, Spira '18]

A tool for the electroweak one-loop corrections to Higgs decays in the 2HDM including the state-of-the-art QCD corrections

• Webpage: https://github.com/marcel-krause/2HDECAY

• Features:

- * Full EW one-loop corrections to all 2-body (not-loop induced) 2HDM Higgs decays
- * Combination with state-of-the-art QCD corrections implemented in HDECAY [Djouadi,Kalinowski,MM,Spira]
- * Different renormalization schemes implemented
 [Krause,Lorenz,MM,Santos,Ziesche; Krause,Santos,MM,Ziesche; Altenkamp,Dittmaier,Lang,Rzehak,Denner]
- * Separate output of EW corrections to tree-level partial widths
- * Consistent parameter conversion for comparison of different renormalization schemes

$\mathcal{N}ew \mathcal{P}hysics \mathcal{F}irst in \mathcal{H}iggs \mathcal{P}air \mathcal{P}roduction?$ [Gröber,MM,Spira '16]

 MCHM10: minimal composite Higgs model with heavy top and bottom partners; cxn at NLO QCD

Blue points - Signal events S: $S_{SM} + 3\sqrt{S_{SM}} \le S$ or $S_{SM} - 3\sqrt{S_{SM}} \ge S$ Assumption: Deviations of Higgs couplings to SM particles < projected experimental sensitivity

• 3 CP-mixed neutral scalars in C2HDM:

Resonant heavy Higgs producion possible \rightsquigarrow strong increase of c×n

 α_2 CP mixing angle; cxn at NLO QCD

Gröber, MMM, Spira '17

For recent works on di-Higgs production in 2HDMs, see also e.g.

[Kon,Nagura,Ueda,Yagyu; Babu,Jana]

Benchmarks for $\mathcal{H}iggs \mathcal{P}air \mathcal{P}roduction$

$\mathcal{H}iggs \ \mathcal{P}air \ \mathcal{P}roduction \ in \ \mathcal{BSM} \ \mathcal{S}ample \ \mathcal{M}odels$

- What is the present general picture in BSM Models?
- Sample Benchmark Models: CP-violating 2HDM (C2HDM) and NMSSM
 - common feature: extended Higgs sector with ≥ 3 neutral Higgs bosons \rightsquigarrow possibility of $gg \rightarrow H_jH_k$ with $H_j \neq H_k$
 - different: NMSSM Higgs self-couplings in terms of gauge couplings C2HDM Higgs self-couplings free (modulo exp. & theor. constraints)

The \mathcal{NMSSM} Higgs Sector

• Next-to-Minimal Supersymmetric Extension of the SM: NMSSM

Fayet; Kaul eal; Barbieri eal; Dine eal; Nilles eal; Frere eal; Derendinger eal; Ellis eal; Drees; Ellwanger eal; Savoy; Elliott eal; Gunion eal; Franke eal; Maniatis; Djouadi eal; Mahmoudi eal; ...

- SUSY Higgs Sector: at least 2 complex Higgs doublets, NMSSM: plus complex singlet field ~~
- Enlarged Higgs and neutralino sector: 2 complex Higgs doublets \hat{H}_u, \hat{H}_d , 1 complex singlet \hat{S}

7 Higgs bosons:
$$H_1, H_2, H_3, A_1, A_2, H^+, H^-$$

5 neutralinos: $\tilde{\chi}_i^0$ $(i = 1, ..., 5)$

• Significant changes of Higgs boson phenomenology

M.M.Mühlleitner, 18 Feb 2019, HPNP 2019, Osaka University

$\mathcal{T}he \; \mathcal{C}2HDM$

$$\begin{split} V_{\text{tree}} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right] \,. \end{split}$$

- CP Violation: m_{12}^2 , λ_5 can be complex (all others real); $m_{12}^2 \neq \lambda_5 \rightsquigarrow$ CP violation
- Particle content:
 - 3 neutral CP-mixing Higgs bosons H_1, H_2, H_3
 - 1 charged Higgs pair H^{\pm}
- Flavour-Changing Neutral Currents (FCNC) at tree-level: forbidden by \mathbb{Z}_2 symmetry

$$\Phi_1 \to \Phi_1 , \qquad \Phi_2 \to -\Phi_2 .$$

	Type I	Type II	Lepton-Specific	Flipped
Up-type quarks	Φ_2	Φ_2	Φ_2	Φ_2
Down-type quarks	Φ_2	Φ_1	Φ_2	Φ_1
Leptons	Φ_2	Φ_1	Φ_1	Φ_2

$\mathcal{T}he \; \mathcal{C}2HDM$

$$\begin{split} V_{\text{tree}} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right] \,. \end{split}$$

- CP Violation: m_{12}^2 , λ_5 can be complex (all others real); $m_{12}^2 \neq \lambda_5 \rightsquigarrow$ CP violation
- Particle content:
 - 3 neutral CP-mixing Higgs bosons H_1, H_2, H_3
 - 1 charged Higgs pair H^{\pm}
- Flavour-Changing Neutral Currents (FCNC) at tree-level: forbidden by \mathbb{Z}_2 symmetry

$$\Phi_1 \to \Phi_1 , \qquad \Phi_2 \to -\Phi_2 .$$

	Type I	Type II	Lepton-Specific	Flipped
Up-type quarks	Φ_2	Φ_2	Φ_2	Φ_2
Down-type quarks	Φ_2	Φ_1	Φ_2	Φ_1
Leptons	Φ_2	Φ_1	Φ_1	Φ_2

$\boldsymbol{\mathcal{S}}\text{cans}$ and $\boldsymbol{\mathcal{N}}\text{otation}$

• Scan in C2HDM & NMSSM spaces:

keep only points compatible with theoretical and experimental constraints

• Notation C2HDM & NMSSM:

- *h* SM-like Higgs boson
- H_{\downarrow} lighter non-SM-like Higgs boson
- H_{\uparrow} heavier non-SM-like Higgs boson

• Additionally in NMSSM:

- A_{\downarrow} lighter non-SM-like pseudoscalar Higgs boson
- A_{\uparrow} heavier non-SM-like pseudoscalar Higgs boson

$h, H_{\downarrow}, H_{\uparrow}$ CP-mixing states in C2HDM, pure scalars in CP-conserving NMSSM

$\mathcal{E} x perimental \ \mathcal{R} esults \ - \ \mathcal{I} m plications \ for \ \mathcal{B} SM \ \mathcal{S} M - like \mathcal{H} iggs \ \mathcal{P} air \ \mathcal{P} roduction$

- limits $\mathcal{O}(\mathsf{pb})$ for $m_X \leq 300 \text{ GeV}$
- limits $\mathcal{O}(\mathsf{fb})$ for $m_X \ge 1$ TeV \rightsquigarrow severly limits enhancement in hh production

$\mathcal{I}nterplay\ \mathcal{S}ingle\ \mathcal{H}iggs\ and\ \mathcal{D}i\text{-}\mathcal{H}iggs\ \mathcal{P}roduction$

• Heavy Higgs Bosons:

- $\ast\,$ decay into $t\bar{t}$ if kinematically possible
- * exotic 4-top final state from producton of heavy Higgs boson pair
- * large rates constrained by single Higgs production in $t\bar{t}$ final state
- $* \ \leftarrow \ \text{no experimental data available}$
- \ast encourage experiments to look into these single Higgs signatures

• Light Higgs Bosons:

- * light Higgs states below 125 GeV possible
- * huge di-Higgs cross sections
- * dominant decays into $b\bar{b}\text{, }\tau\bar{\tau}\text{, }\gamma\gamma$
- $\ast\,$ large rates constrained by single production of light Higgs bosons
- * encourage experiments to look for light Higgs bosons

- Left: C2HDM T1 $hh \rightarrow 2b2\gamma$; large $t\bar{t}$ rates responsible for exclusion beyond HiggsBounds

- Right: C2HDM T1 $hH_{\downarrow} \rightarrow 4b$ enhanced by about a factor of 3

- Left: NMSSM $hh \rightarrow 4b$: barely enhanced compared to SM HiggsBounds

- Right: NMSSM $hH_{\downarrow} \rightarrow 4b$: enhanced by about a factor of 5

$\mathcal{M}aximum \ \mathcal{C}ross \ \mathcal{S}ection \ \mathcal{V}alues$

•	Maximum	cross	section	values	C2HDM:
---	---------	-------	---------	--------	--------

$H_iH_j/model$	T1	T2		
hh	794	34.2		
hH_{\downarrow}	49.17	11.38		
hH_{\uparrow}	17.65	10.84		
$H_{\downarrow}H_{\downarrow}$	3196	0.18		
$H_{\downarrow}H_{\uparrow}$	12.58	0.11		
$H_{\uparrow}H_{\uparrow}$	7.10	0.18		

• Maximum cross section values NMSSM:

$H_i H_j$	NMSSM
hh	34
hH_{\downarrow}	125
hA_{\downarrow}	70
hH_\uparrow	1.1
$H_{\downarrow}H_{\downarrow}$	3.7
$H_{\downarrow}H_{\uparrow}$	0.2
$H_{\uparrow}H_{\uparrow}$	0.004
$A_{\downarrow}A_{\downarrow}$	70

T1 - Type 1, T2 - Type 2

 \mathcal{T} rilinear \mathcal{H} iggs \mathcal{C} ouplings and \mathcal{E} lectroweak \mathcal{B} aryogenesis

Link Higgs Self-Couplings - Electroweak Baryogenesis

• Electroweak Baryogenesis (EWBG): generation of the observed baryon-antibaryon asymmetry in the electroweak phase transition (EWPT) [Riemer-Sorensen, Jenssen '17]

$$5.8 \cdot 10^{-10} < \frac{n_B - n_{\bar{B}}}{n_{\gamma}} < 6.6 \cdot 10^{-10}$$

• Sakharov Conditions:

- * (i) B number violaton (sphaleron processes)
- * (*ii*) C and CP violation
- * (*iii*) Departure from thermal equilibrium
- Additional constraint: EW phase transition must be strong first order PT [Quiros '94; Moore '99]

$$\xi_c \equiv \frac{\langle \Phi_c \rangle}{T_c} \ge 1$$

 $\langle \Phi_c \rangle$ and T_c field configuration and temperature at phase transition

M.M.Mühlleitner, 18 Feb 2019, HPNP 2019, Osaka University

[Sakharov '67]

$\mathcal{E} \textit{ffects on the \mathcal{T}rilinear \mathcal{H}iggs \mathcal{S}elf-\mathcal{C}oupling - \mathcal{C}2HDM}$

* Grey: exp+theor constraints, colour
$$\xi_c \ge 1$$
 * CP-odd part of $h \le 24\% \xrightarrow{\text{EWPT}} \sim 2.5\%$
* $1.1 \le \left|\frac{\lambda_{hhh}^{\text{C2HDM,NLO}}}{\lambda_{hhh}^{\text{SM,NLO}}}\right| \le 2.9$ * See also recent work by
[Plehn eal '17; Spannowsky eal '17]

$\mathcal{N}\mathsf{ew}\ \mathcal{T}\mathsf{ool}\ \mathcal{B}\mathsf{SMPT}$

• **BSMPT** - **Beyond the Standard Model Phase Transitions:**

[Basler,MM '18]

A C++ tool for the electroweak phase transition in extended Higgs sectors Computation of loop-corrected effective potential at $T \neq 0$ including the thermal masses Renormalization based on physical conditions (see backup slides)

• Webpage: https://github.com/phbasler/BSMPT

• Features:

- * Computation of $\xi_c = v_c/T_c$
- * Calculation of evolution of the VEV(s) with T
- * Calculation of the global minimum of the 1-loop-corrected potential at T=0
- * Computation of the loop-corrected trilinear Higgs self-couplings in the "on-shell" scheme
- Models: generic code allows for easy implementation of new models implemented models: 2HDM, C2HDM, N2HDM

M.M.Mühlleitner, 18 Feb 2019, HPNP 2019, Osaka University

		Benchmark Point	
m_{H_1} [GeV]	125.09	$BR(H_2)$	$BR(H_2 \to H_1 H_1) = 0.400$
m_{H_2} [GeV]	291.49		$BR(H_2 o ZH_1) = 0.294$
$m_{H^\pm}~[{ m GeV}]$	543.30		$BR(H_2 o WW) = 0.156$
${\sf Re}(m_{12}^2)$ [GeV ²]	15590	$BR(H_3)$	$BR(H_3 o ZH_2) = 0.940$
α_1	1.366		$BR(H_3 o t\bar{t}) = 0.056$
$lpha_2$	-0.028		$BR(H_3 \to WW) = 0.002$
$lpha_3$	0.086	$BR(H^{\pm})$	$BR(H^\pm o WH_2) = 0.943$
aneta	5.08		${\sf BR}(H^+ o t ar b){=}0.054$
m_{H_3} [GeV]	548.97		$BR(H^{\pm} \rightarrow WH_1) = 0.002$
ξ_c	1.52	Combinatio	n of rates to identify CP violation.
R_{13}^2	$7.641 \cdot 10^{-4}$	* type l	H_1 SM-like mostly CP-even
R_{23}^2	$7.436 \cdot 10^{-3}$	\star type I,	T_{1} SM-fike, mostly CI -even
R_{33}^2	0.992	* $\Pi_2 \rightarrow$ forbidd	en w/o CP violation
$\sigma_{hh}^{\sf NLO}$ [fb]	217.95	see also [Br	anco eal '99;Fontes eal '15,King eal '15]

♦ Di-Higgs Production

* requires sophisticated experimental techniques & high precision theory predictions

♦ Beyond the Standard Model

- * Higgs pair production can be enhanced
- * New: 2 different Higgs bosons in the final state; cascade Higgs-to-Higgs decays in non-minimal Higgs sector extensions
- ◊ Higgs Pair Production in Benchmark Models
 - $\ast\,$ C2HDM and NMSSM show these features

\diamond Link to baryogenesis:

* Requires enhanced Higgs self-couplings in C2HDM

$\mathcal{T}hank \ \mathcal{Y}ou \ \mathcal{F}or \ \mathcal{Y}our \ \mathcal{A}ttention!$

\mathcal{C} alculation

$$\sigma_{\rm NLO} = \sigma_{\rm LO} + \Delta \sigma_{\rm virt} + \Delta \sigma_{gg} + \Delta \sigma_{qg} + \Delta \sigma_{q\bar{q}},$$

with

$$\sigma_{\rm LO} = \int_{\tau_0}^1 d\tau \frac{d\mathcal{L}^{gg}}{d\tau} \hat{\sigma}_{\rm LO} \left(Q^2 = \tau s \right),$$

$$\Delta \sigma_{\rm virt} = \frac{\alpha_s \left(\mu_R^2 \right)}{\pi} \int_{\tau_0}^1 d\tau \frac{d\mathcal{L}^{gg}}{d\tau} \hat{\sigma}_{\rm LO} \left(Q^2 = \tau s \right) \, C_{\rm virt} \left(Q^2 \right),$$

$$\Delta \sigma_{ij} = \frac{\alpha_s \left(\mu_R^2 \right)}{\pi} \int_{\tau_0}^1 d\tau \frac{d\mathcal{L}^{ij}}{d\tau} \int_{\frac{\tau_0}{\tau}}^1 \frac{dz}{z} \, \hat{\sigma}_{\rm LO} \left(Q^2 = z\tau s \right) C_{ij}(z)$$

where

$$\begin{aligned} C_{gg} &= -z P_{gg}(z) \log \frac{\mu_F^2}{\tau s} + d_{gg}(z) + 6[1 + z^4 + (1 - z)^4] \left(\frac{\log(1 - z)}{1 - z}\right)_+, \\ C_{gq} &= -\frac{z}{2} P_{gq}(z) \log \frac{\mu_F^2}{\tau s(1 - z)^2} + d_{gq}(z), \\ C_{q\bar{q}} &= d_{q\bar{q}}(z) \end{aligned}$$

${\cal C}alculation \ {\cal C}ontinued$

In the heavy top limit (HTL)

$$C_{\text{virt}} \rightarrow \pi^2 + \frac{11}{2} + C_{\triangle \triangle}$$
$$d_{gg} \rightarrow -\frac{11}{2}(1-z)^3$$
$$d_{gq} \rightarrow = \frac{2}{3}z^2 - (1-z)^2,$$
$$d_{q\bar{q}} \rightarrow \frac{32}{27}(1-z)^3$$

Virtual Corrections

• Virtual corrections

47 generic box diagrams, 8 triangle diagrams (\leftarrow single Higgs), 1PR ($\leftarrow H \rightarrow Z\gamma$)

 $\ast\,$ full diagram w/o tensor reduction \rightarrow 6-dim. Feynman integral

* UV singularities: end-point subtractions

$$\int_0^1 dx \frac{f(x)}{(1-x)^{1-\epsilon}} = \int_0^1 dx \frac{f(1)}{(1-x)^{1-\epsilon}} + \int_0^1 dx \frac{f(x) - f(1)}{(1-x)^{1-\epsilon}} = \frac{f(1)}{\epsilon} + \int_0^1 dx \frac{f(x) - f(1)}{1-x} + \mathcal{O}(\epsilon)$$

- * IR singularities: IR subtraction (based on struc. of integrand and relative to HTL)
- * thresholds: $Q^2 \ge 0, 4m_t^2 \rightsquigarrow \text{IBP} \rightsquigarrow \text{reduction of power of denominator}$ $[m_t^2 \rightarrow m_t^2(1 - ih)]$

$$\int_0^1 dx \frac{f(x)}{(a+bx)^3} = \frac{f(0)}{2a^2b} - \frac{f(1)}{2b(a+b)^2} + \int_0^1 dx \frac{f'(x)}{2b(a+bx)^2}$$

Virtual Corrections Continued

- **Renormalization:** α_s : $\overline{\text{MS}}$, 5 flavours, m_t : on-shell
- Phase space integration: 7-dim. integrals for $d\sigma/dQ^2$
- Infrared mass effects: after subtraction of HTL [adding back HTL results obtained with HPAIR]
- Richardson extrapolation: extraction to narrow-width approximation $(h \rightarrow 0)$

• Real Corrections:

- full matrix elements generated with FeynArts and FormCalc
- matrix elements in HTL involving full LO sub-matrix elements subtracted ~>> IR-, COLL-finite [adding back HTL results obtained from HPAIR]

• Scan over parameter space:

with ScannerS, checks for: [Coimbra, Sampaio, Santos '13; Ferreira, Guedes, Sampaio, Santos '14]

• Theoretical constraints:

boundedness from below, tree-level perturbative unitarity, EW vacuum is global minimum of tree-level potential and also NLO [BSMPT, Basler, MMM '18]

• Experimental constraints::

* S, T, U parameters for EW precision observables	[Baak eal '14]
* $R_b = \Gamma(Z \to b\bar{b}) / \Gamma(Z \to \text{ hadrons}) \text{ and } B \to X_s \gamma$	[Haber,Logan '99;Deschamps eal '09; Mahmoudi,Stal '09; Steinhauser eal '17]
* Higgs exclusion bounds by HiggsBounds	[Bechtle eal '08,'11,'13]
\ast Higgs rates checked via SUSHI and C2HDM_HDECAY	[Harlander eal; Fontes eal]
* Electric dipole moment of the electron	[The ACME Collaboration]

$\mathcal{C}\text{2HDM }\mathcal{S}\text{can }\mathcal{R}\text{anges}$

	t_{eta}	$\alpha_{1,2,3}$	${\sf Re}(m_{12}^2)$ [TeV ²]	$m_{H^{\pm}}$ [TeV]	$m_{H_i \neq h}$ [TeV]
min	0.8	$-\frac{\pi}{2}$	0	0.15/0.59	0.01
max	20	$\frac{\pi}{2}$	0.5	1.5	1.5

 $10 \text{ GeV} \leq m_{H_j} < 1.5 \text{ TeV}$

$$\alpha(M_Z) = 1/127.92, \quad \alpha_s^{MS}(M_Z) = 0.118,$$

 $M_Z = 91.187 \text{ GeV}, \quad M_W = 80.358 \text{ GeV},$

 $m_t = 172.5 \text{ GeV}, \quad m_b^{\overline{\text{MS}}}(m_b^{\overline{\text{MS}}}) = 4.18 \text{ GeV},$

 $m_\tau = 1.777 \text{ GeV}.$

$\mathcal{N}MSSM \mathcal{S}can$

• Conditions on the parameter scan:

- * At least one CP-even Higgs boson $H_i \equiv h$ with:
- * Compatibility with μ_{XX}^{exp} (X = b, τ, γ, W, Z)
- \ast Compatibility with Higgs exclusion bounds
- \ast Compatibility with SUSY searches
- * Compatibility w/ DM constraints

```
124 \,\, {
m GeV} \,\, \lesssim M_h \lesssim 126 \,\, {
m GeV}
```

[SusHi, NMSSMTools, NMSSMCALC]

[HiggsBounds]

[PLANCK, LUX, XENON1T, micrOmegas]

Constraints from low-energy observables, from LEP, Tevatron and LHC searches [NMSSMTools]

	t_{β}	λ	κ	M_1	M_2	M_3	A_t	A_b	A_{τ}	$m_{ ilde{Q}_3}$	$m_{\tilde{L}_3}$	A_{λ}	A_{κ}	μ_{eff}
									in Te	eV				
min	1	0	-0.7	0.1	0.2	1.3	-6	-6	-3	0.6	0.6	-2	-2	-5
max	50	0.7	0.7	1	2	7	6	6	3	4	4	2	2	5

$$m_{ ilde{t}_R}=m_{ ilde{Q}_3}\;,\quad m_{ ilde{ au}_R}=m_{ ilde{L}_3}\quad ext{ and }\ m_{ ilde{b}_R}=3 ext{ TeV}$$

$$m_{\tilde{u}_R,\tilde{c}_R} = m_{\tilde{d}_R,\tilde{s}_R} = m_{\tilde{Q}_{1,2}} = m_{\tilde{L}_{1,2}} = m_{\tilde{e}_R,\tilde{\mu}_R} = 3 \text{ TeV}$$

$$\lambda^2 + \kappa^2 < 0.7^2$$

C2HDM T1 Benchmark Points

	T1BP5	T1BP6
$m_{H_1} \; [{\rm GeV}]$	125.09	62.67
$m_{H_2} \; [{\rm GeV}]$	265.60	125.09
$m_{H^{\pm}}~[{ m GeV}]$	307.47	164.35
$\operatorname{Re}(m_{12}^2)$ [GeV ²]	11435	130
$lpha_1$	1.246	-0.145
$lpha_2$	$7.125 \cdot 10^{-3}$	-0.0536
$lpha_3$	-1.478	-0.0650
aneta	5.54	8.26
$m_{H_3} \; [{\rm GeV}]$	279.70	138.01
R_{13}^2	$5.077 \cdot 10^{-5}$	$2.870 \cdot 10^{-3}$
R_{23}^2	0.991	$4.212 \cdot 10^{-3}$
R_{33}^2	$8.611 \cdot 10^{-3}$	0.993
\mathcal{L}_{excl} [fb $^{-1}$]	1082	2579
$\sigma_{hh}^{\rm NLO}$ [fb]	897.74	37.26
K-factor	2.06	1.95

 R_{i3}^2 quantifies

singlet admixture

$\mathcal{C}\text{2HDM T1} \; \mathcal{B}\text{enchmark} \; \mathcal{P}\text{oints} \; \text{-} \; \mathcal{C}\text{ontinued}$

• C2HDM rates normalized to SM rate for di-Higgs final state $[H_iH_j]$:

 $(xx)(yy) \colon [pp \to H_iH_j \to (xx)(yy)]/[pp \to H^{\mathsf{SM}}H^{\mathsf{SM}} \to (xx)(yy)]$

	T1BP5	T1BP6
$(b\bar{b})(b\bar{b})_{H_iH_j}$ [fb]	[<i>hh</i>]: 23.80	$[H_{\downarrow}H_{\downarrow}]$: 145
$(b\bar{b})(\tau\bar{ au})_{H_iH_j}$ [fb]	[<i>hh</i>]: 23.51	$[H_{\downarrow}H_{\downarrow}]$: 124
$(b\bar{b})(\gamma\gamma)_{H_iH_j}$ [fb]	[<i>hh</i>]: 24.32	$[H_{\downarrow}H_{\downarrow}]$: 0.29

- T1BP5: enhanced hh production due to resonant H_{\downarrow} , H_{\uparrow} production
- T1BP6: enhanced $H_{\downarrow}H_{\downarrow}$ production due light H_{\downarrow} and due to resonant H_{\uparrow} production

$\mathcal{M}ass \ \mathcal{D}istributions$

[MM,Sampaio,Santos,Wittbrodt '17]

- Tools for scan: ScannerS, sHDECAY, N2HDECAY

- Degenerate Higgs bosons around 125 GeV not included
- Includes latest bound on $M_{H^{\pm}}(\text{2HDM II}) > 580 \text{ GeV}$ [Misiak,Steinhauser '17]

M.M.Mühlleitner, 18 Feb 2019, HPNP 2019, Osaka University

$\mathcal{M}ass \ \mathcal{D}istributions$

[MM,Sampaio,Santos,Wittbrodt '17]

- All models: $m_{H_{\downarrow}} < m_{h_{125}}$ possible (C2HDM: only in the real 2HDM limit)
- Type I N2HDM, CxSM, C2HDM: $m_{H_{\uparrow}} < m_{h_{125}}$ possible
- Pseudoscalars (N2HDM, NMSSM) can be lighter than 125 GeV

$\mathcal{M}ass \ \mathcal{D}istributions$

[MM,Sampaio,Santos,Wittbrodt '17]

Goals for experiment: - Search for Higgs states below 125 GeV:

- into SM final states: $\gamma\gamma$, $\tau\tau$

- in Higgs-to-Higgs decays; Higgs \rightarrow Higgs + gauge boson; SUSY particle final states

M.M.Mühlleitner, 18 Feb 2019, HPNP 2019, Osaka University

• Common features

- * 3 neutral CP-even or 3 neutral CP-mixed Higgs bosons
- * Mass eigenstates w/ non-vanishing singlet or CP-admixture Note: CP-mixing measurement difficult →→ in first phase after discovery of additional Higgs bosons singlet and pseudoscalar admixture not distinguishable

• Different features:

* Based on different underlying symmetries! ~> implications for phenomenology

• Notation:

```
SM-like Higgs: h_{125}
```

Non-SM-like CP-even/CP-mixed Higgs bosons: H_{\downarrow} , H_{\uparrow} ($m_{H_{\downarrow}} < m_{H_{\uparrow}}$)

Pseudoscalar of the N2HDM: A

Pseudoscalar of the NMSSM: A_1 , A_2

$\mathcal{D}ecay \ \mathcal{R}ates \ in \ \mathcal{P}hoton \ \mathcal{F}inal \ \mathcal{S}tates$

Comments: - Enhanced rates below 125 GeV in NMSSM, type II N2HDM and C2HDM

- Experiments: test low mass region to probe the models
- Distinction based on rates: rates >5 fb in 130...350 GeV single out N2HDM II

$\mathcal{D}ecay \ \mathcal{R}ates \ in \ Z \ \mathcal{B}oson \ \mathcal{F}inal \ \mathcal{S}tates$

Comments: - Highest rates for large masses in N2HDM

- Experimental: Test high-mass region to probe model
- Distinction based on rates: observation of scalar w/ $\mathcal{O}(100)$ fb above 380 GeV excludes NMSSM

\mathcal{B} aryogenesis in a \mathcal{N} utshell

M.M.Mühlleitner, 18 Feb 2019, HPNP 2019, Osaka University

[adapted from Morrissey, Ramsey-Musolf '12]

$\mathcal{S}trong \ \mathcal{F}irst \ \mathcal{O}rder \ \mathcal{E}lectroweak \ \mathcal{P}hase \ \mathcal{T}ransition$

M.M.Mühlleitner, 18 Feb 2019, HPNP 2019, Osaka University

$\mathcal{T}he \ \mathcal{L}oop\text{-}\mathcal{C}orrected \ \mathcal{E}ffective \ \mathcal{P}otential \ at \ \mathcal{F}inite \ \mathcal{T}emperature$

• Investigate phase transition: determine

$$\xi_c \equiv \frac{\langle \Phi_c \rangle}{T_c}$$

for C2HDM taking into account all theoretical and experimental constraints

• Effective potential at finite temperature:

$$V_{\text{eff}}^{(1)}(\vec{\omega}, \mathbf{T}) = V_{\text{tree}}(\vec{\omega}) + V_{\text{CW}}(\vec{\omega}) + V_{\text{CT}}(\vec{\omega}) + V_{T}(\vec{\omega}, \mathbf{T})$$

• T = 0 **1-loop contribution**: Coleman-Weinberg contribution

[Coleman,Weinberg '73]

$$V_{\rm CW} = \sum_{i} \frac{n_i}{64\pi^2} (-1)^{2s_i} m_i^4(\vec{\omega}) \left[\ln\left(\frac{m_i^2(\vec{\omega})}{\mu^2}\right) - c_i \right]$$

 n_i number of degrees of freedom

 μ renormalization scale, set to VEV $v\approx 246~{\rm GeV}$

 $\overline{\text{MS}}$ renormalization constants $c_i = 5/6$ for bosons, $c_i = 3/2$ otherwise

$\mathcal{T}he \ \mathcal{L}oop\ \mathcal{C}orrected \ \mathcal{E}ffective \ \mathcal{P}otential \ at \ \mathcal{F}inite \ \mathcal{T}emperature$

• The counterterm potential:

Choose V_{CT} such that the minimum, the masses and the mixing angles at T = 0remain the same at one-loop level [Basler,Krause,MM,Wittbrodt,Wlotzka '16]

$$0 = (\partial_{\phi_i} V_{\mathsf{CT}} + \partial_{\phi_i} V_{\mathsf{CW}})|_{\langle \phi \rangle_{T=0}}$$

$$0 = (\partial_{\phi_i} \partial_{\phi_j} V_{\mathsf{CT}} + \partial_{\phi_i} \partial_{\phi_j} V_{\mathsf{CW}})|_{\langle \phi \rangle_{T=0}}$$

• $T \neq 0$ contribution:

- Thermal loops (fermionic (+) and bosonic (-) integral J_{\pm}) [Carena eal '08]

$$V_T = \sum_i n_i \frac{T^4}{2\pi^2} J_{\pm}(m_i^2(\vec{\omega})/T^2)$$

- Thermal mass corrections

[Arnold, Espinosa '94]

$$J_{-}\left(\frac{m_{i}^{2}}{T^{2}}\right) \to J_{-}\left(\frac{m_{i}^{2}}{T^{2}}\right) - \frac{\pi}{6}(\overline{m}_{i}^{3} - m_{i}^{3}) , \qquad i = W_{L}^{\pm}, Z_{L}, \gamma_{L}, \Phi^{0}, \Phi^{\pm}$$

with the thermal masses \overline{m}_i

\mathcal{P} arameter \mathcal{S} can

• Scan over parameter space:

with ScannerS, checks for: [Coimbra, Sampaio, Santos '13; Ferreira, Guedes, Sampaio, Santos '14]

• Theoretical constraints:

boundedness from below, tree-level perturbative unitarity, EW vacuum is global minimum of tree-level potential at T=0

• Experimental constraints::

- * S, T, U parameters for EW precision observables * $R_b = \Gamma(Z \rightarrow b\bar{b})/\Gamma(Z \rightarrow hadrons)$ and $B \rightarrow X_s \gamma$ [Habe Mahmou
- * Higgs exclusion bounds by HiggsBounds
- * Higgs rates checked via SUSHI and C2HDM_HDECAY
- * Electric dipole moment of the electron

• Calculation of the global electroweak minimum: as function of T to determine $\xi_c \leftarrow$ use of code BSMPT

M.M.Mühlleitner, 18 Feb 2019, HPNP 2019, Osaka University

[Baak eal '14]

[Haber,Logan '99;Deschamps eal '09;

Mahmoudi,Stal '09; Steinhauser eal '17]

[Bechtle eal '08,'11,'13]

[Harlander eal; Fontes eal]

[The ACME Collaboration]

[Basler,MM '18]