Higgs Precision (Multi-Higgs Sector) at the ILC

Kei Yagyu (Osaka U)

HPNP2019 (ILC Symposium)

2019, Feb. 18th, Osaka U

Introduction

□ No new particle has been observed yet.

Is the SM enough? **Definitely No!**

Nature of the Higgs

 \square Nature of the Higgs boson \rightarrow New physics beyond the SM

Higgs is a Fermion (Compositeness) : Chiral Symmetry Gauge boson (Gauge-Higgs Unification): Gauge Symmetry

BSM Phenomena

 $\hfill\square$ BSM phenomena \rightarrow New physics beyond the SM

Neutrino masses	Radiative seesaw models (Loop level v mass gen.)
Dark matter	Inert models (Higgs sector with an unbroken parity)
Baryon asymmetry	EWBG (CPV and strong 1^{st} order phase transition)

Studying the Higgs sector is a Probe of New Physics

Bottom-Up Approach

Basic Constraints

1. Electroweak ρ parameter: $\rho_{exp} = 1.00039 \pm 0.000019$

Introduction of **higher isospin Higgs fields** is constrained.

$$ho_{ ext{tree}} = rac{m_W^2}{m_Z^2 \cos^2 heta_W} = rac{\sum_j v_j^2 [T_j(T_j+1) - Y_j^2]}{\sum_i 2Y_i^2 v_i^2}$$

T: Isospin, Y: Hypercharge,

v: VEV

 Φ + singlets + doublets (+ inert fields)

There are models with $\rho_{\text{tree}} = 1$ containing higher isospin Higgs fields.

2. Flavor Changing Neutral Currents (FCNC)

Introduction of **multi-doublet structure** is constrained.

Multi-doublet with Natural Flavor Conservation (NFC)

2 Higgs doublet models with NFC

□ Four possibilities (types) of the 2HDM with NFC

Barger, Hewett, Phillips, PRD41 (1990); Grossman, NPB426 (1994); Aoki, Kanemura, Tsumura, Yagyu, PRD80 (2009)

How to test the multi Higgs models

Synergy of two searches is important.

Backing to 90's

Precision physics has already **"known"** the top mass before the discovery!! We can do it for the Higgs physics.

Indirect Search = Higgs Precision Physics

"No-Loose Theorem" of the Higgs Physics

Higgs Couplings at 1-loop Level

Kanemura, Kikuchi, Sakurai, KY, Comp. Phys. Comm. 233, 134-144 (2018)

□ H-COUP: A fortran90 code to calculate 1-loop corrected h(125) couplings

based on the on-shell renormalization scheme

H-COUP

Kanemura, Kikuchi, Sakurai, KY, Comp. Phys. Comm. 233, 134-144 (2018)

H-COUP

H-COUP is a calculation tool composed of a set of Fortran codes to compute the renormalized Higgs boson couplings with radiative corrections in various non-minimal Higgs models, such as the Higgs singlet model, four types of two Higgs doublet models and the inert doublet model. The impolved on-shell renormalization scheme is adopted, where the gauge dependence is eliminated.

Authors: Shinya Kanemura, Mariko Kikuchi, Kodai Sakurai and Kei Yagyu

The manual for H-COUP version 1.0 can be taken on arXiv:1710.04603 [hep-ph].

Downloads

• H-COUP version 1.0 : [HCOUP-1.0.zip] [The manual is here]

For details, please see Sakurai's poster on Thursday.

Synergy b/w Direct & Indirect Searches

 $\overline{m_{\Phi}} = \overline{m_{H+}} = \overline{m_A} = \overline{m_H}$

Fingerprinting the Higgs Sector at NLO

Kanemura, Kikuchi, Sakurai, Mawatari, KY, PLB783, 140 (2018)

 $\cos(\beta - a) < 0$

HL-LHC: O(10)% deviation is needed for discrimination.
ILC250: O(1)% deviation could be enough for discrimination!!

Power of the ILC Precision

Kanemura, Kikuchi, KY, NPB896, 80 (2015)

□ Once we determine the type, we can further extract model parameters.

Ex. Type-II 2HDM $(\Delta \kappa_{v}, \Delta \kappa_{\tau}, \Delta \kappa_{b}) = (-2\pm 2\%, 5\pm 2\%, 5\pm 4\%)$ at HL-LHC like scenario: $(-2\pm 0.4\%, 5\pm 1.9\%, 5\pm 0.9\%)$ at ILC

Summary

□ Higgs physics is the window of New Physics.

- Synergy between (HL-)LHC direct searches and ILC indirect precision physics is important to narrow down model parameters.
- Deviations in the h(125) property tell us the structure of the Higgs sector and the scale of the 2nd Higgs boson.
- O(1)% level accuracy of the h coupling measurements is required for the realistic fingerprinting of the Higgs sector.

We need the ILC to find "next step" to reach New Physics! I hope Japanese new era (Heisei \rightarrow ???) will be with ILC!!

ATLAS-CONF-2018-31 (13 TeV, 80/fb)

Parameter	(a) no BSM
κz	1.07 ± 0.10
κ _W	1.07 ± 0.11
КЬ	$0.97^{+0.24}_{-0.22}$
κ _t	$1.09^{+0.15}_{-0.14}$
$\kappa_{ au}$	$1.02^{+0.17}_{-0.16}$
κ_{γ}	$1.02^{+0.09}_{-0.12}$
Кg	$1.00^{+0.12}_{-0.11}$
B _{BSM}	-

$$\kappa_{X} = \frac{g_{hXX}^{}^{}^{}\mathrm{Exp}}{g_{hXX}^{}^{}\mathrm{SM}}$$

Higgs Working Group Report, 1310.8361 [hep-ph]

Facility	LHC	HL-LHC
$\sqrt{s} \; (\text{GeV})$	14,000	14,000
$\int \mathcal{L}dt \; (\mathrm{fb}^{-1})$	300/expt	3000/expt
κ_{γ}	5-7%	2-5%
κ_g	6-8%	3-5%
κ_W	4-6%	2-5%
κ_Z	4-6%	2-4%
κ_{ℓ}	6-8%	2-5%
$\kappa_d = \kappa_b$	10-13%	4-7%
$\kappa_u = \kappa_t$	14-15%	7-10%

2 Higgs doublet models with NFC

□ Natural Flavor Conservation (NFC) Scenario

 $\Phi_{u,d,e}$: Either Φ_1 or Φ_2

$$-\mathcal{L}_Y = Y_u \bar{Q}_L (i\sigma_2) \Phi_u^* u_R + Y_d \bar{Q}_L \Phi_d d_R + Y_e \bar{L}_L \Phi_e e_R + \text{h.c.}$$

\square This can be realized by imposing a (softly-broken) Z_2 symmetry.

Barger, Hewett, Phillips, PRD41 (1990); Grossman, NPB426 (1994)

Туре-І	Type-II	Type-X (Leptophilic)	Type-Y (Flipped)
Φ ₂ u	u u	$\Phi_2 \Phi_1$	Φ ₂ Φ ₁
d e	d e	u	u
		d e	d e