Current status of particle physics

• The SM was established by collider experiments
• No new particle found up to now

• Many problems of the SM, such as neutrino mass, dark matter, baryogenesis, inflation, hierarchy, unification, gravity, ...

Higgs must be an important portal for new physics
Higgs sector

Mass generation mechanisms

<table>
<thead>
<tr>
<th>Higgs Mechanism</th>
<th>Yukawa Coupling</th>
<th>Dim. 6 Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_{WW}</td>
<td>$h \tau \tau, h_{bb}$</td>
<td>h_{gg}</td>
</tr>
<tr>
<td>h_{ZZ}</td>
<td>h_{tt}, \ldots</td>
<td>$h_{\gamma\gamma}$</td>
</tr>
</tbody>
</table>

\[
L_{\text{eff}} = \left| D_\mu \Phi \right|^2 - y L \Phi R - \frac{1}{v^2} \left| \Phi \right|^2 GG \\
- V_{\text{eff}}(\Phi)
\]

- hhh
- $hhhh$

EW Symmetry Breaking

EW Phase Transition
Higgs sector

Mass generation mechanisms

<table>
<thead>
<tr>
<th>Higgs Mechanism</th>
<th>Yukawa Coupling</th>
<th>Dim. 6 Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>hWW</td>
<td>$h\tau\tau$, hbb</td>
<td>hgg</td>
</tr>
<tr>
<td>hZZ</td>
<td>htt, ...</td>
<td>$h\gamma\gamma$</td>
</tr>
</tbody>
</table>

$$L_{\text{eff}} = |D_\mu \Phi|^2 - y L \Phi R - \frac{1}{v^2} |\Phi|^2 GG$$

Consistent with the SM, but possibilities of detecting deviations by further precision measurements

$V=246\text{GeV}$

$M_h=125\text{GeV}$

EW Symmetry Breaking

EW Phase Transition
Higgs sector

Mass generation mechanisms

Higgs Mechanism	Yukawa Coupling	Dim. 6 Operators
hWW | h\tau\tau, hbb | hgg
hZZ | htt, ... | h\gamma\gamma

\[L_{\text{eff}} = \left| D_\mu \Phi \right|^2 - y L \Phi R - \frac{1}{\nu^2} |\Phi|^2 G G \]

\[- V_{\text{eff}}(\Phi) \]

V=246GeV \hspace{1cm} hhh
M_h=125GeV \hspace{1cm} hhhh

EW Symmetry Breaking
EW Phase Transition

Yet to be Confirmed
Future experiments

Approved Future Experiments

- HL-LHC
 - Direct/indirect search

- LHC
 - Run II, III

- LISA
 - EWPT via GW

- SuperKEK
 - B

Timeline:
- 2019
- 2026
- 2030
- 2034
- 2040
Future experiments

- **HL-LHC**
 - Direct/indirect search
- **LHC**
 - Run II, III
- **ILC250**
 - Higgs precision
- **LISA**
 - EWPT via GW

Timeline:
- 2040
- 2034
- 2030
- 2026
- 2019
Future experiments

- HL-LHC: Direct/indirect search
- ILC250: Higgs precision
- LISA: EWPT via GW
- Golden time to explore new physics via Higgs
- ILC is key for synergy
Future of Higgs physics:

- **2019**: LHC Run II, III
- **2026**: HL-LHC Direct/indirect search
- **2030**: ILC250 Higgs precision
- **2034**: FCC? 100TeV? ...
- **2040**: ILC500 CLIC?, CEPC?

Golden time to explore new physics via Higgs:

ILC is key for synergy
Why the ILC symposium at HPNP2019?

• We definitely want a high-energy lepton collider
• In particular, ILC250 is designed as a Higgs factory, which should be technically ready
• ILC Project has already a long history, but TODAY it is the really important timing for the realization of the ILC

• Under this circumstance, we believe it quite meaningful to hold a symposium for the ILC at HPNP2019, because here many Higgs experts from around the world meet together
ILC Symposium

1. ILC Project: Status and Prospect 20min.
 Yasuhiro Okada (KEK Director for Research)

2. Physics of ILC: Overview 30min.
 Keisuke Fujii (KEK)

3. ILC as a Higgs Factory: Higgs Precision 45min.
 • EFT Junping Tian (U. of Tokyo)
 • Multi Higgs models Kei Yagyu (Osaka U.)
 • New Physics Eibun Senaha (IBS, Korea)

4. New Physics Searches 20min.
 Yutaka Hosotani (Osaka U.)

5. Panel Discussion 30min. All presenters and you all