

LNV and cLFV probes of heavy Majorana fermions

Ana M. Teixeira

Laboratoire de Physique de Clermont - LPC

BLV 2019 - UAM Madrid, 23 October 2019

Beyond the Standard Model: New Physics

Strong arguments in favour of New Physics!

S.M? seesaw? I.R.

compositness? leptoquarks?

symmetries? SUSY?

Observations unaccounted for in the Standard Model: neutrino oscillations,

baryon asymmetry of the Universe, viable dark matter candidate

And a number of theoretical caveats...

How to unveil the NP model at work?

► Neutrino oscillations: 1st laboratory evidence of NP New mechanism of mass generation? New Majorana fields?! $\Rightarrow \Delta L \neq 0$ with implications for leptogenesis...

SM extensions via "heavy" sterile fermions
Theoretically well-motivated! Rich phenomenology!

How to unveil presence of (Majorana) sterile states? Numerous observables to be explored!

Forbidden or highly suppressed in the SM...

9

SM extended by sterile neutrinos: signs of New Physics?

► Majorana sterile fermions: an appealing hypothesis

NP candidate motivated by numerous theoretical and observational arguments

Potentially a very "visible" NP portal: extensive imprints,

from colliders to low-energies, from flavour dedicated experiments to CPV searches...

⇒ experimental signatures within reach of current and future sensitivities!

 \Rightarrow focus on contributions to lepton number violation processes

Why Lepton Number Violation?

- ► Why not? "Lepton number" is only an accidental symmetry of the SM...
- ▶ Neutrino oscillations: evidence of NP! \Rightarrow Majorana fermions, and $\Delta L = 2$ transitions
- ► $\Delta L = 2$ processes at the "crossroads" of many BSM constructions New theoretical ideas, with massive implications

 \Rightarrow addressing the BAU via leptogenesis!

Many processes to study, at very distinct energy scales

Impressive experimental prospects (in the near future...) and exciting new theoretical ideas & models!

Why Lepton Number Violation?

- ► Why not? "Lepton number" is only an accidental symmetry of the SM
- ► Neutrino oscillations: evidence of NP! ⇒ Majorana fermion
- ► $\Delta L = 2$ processes at the "crossroads" of many BSM constru-New theoretical ideas, with massive implications

 \Rightarrow addressing the BAU via leptogenesis!

Many processes to study, at very distinct energy scale

Impressive experimental prospects (in the near future...) and exciting new theoretical ideas & models! Experimental prospects: Schönert Zsigmond, O'Donnell Wonsak, Sorel

Theory overview & new ideas: Dekens, Herrero Fonseca

► All in all...

part of the reason we are here :)

Why Lepton Number Violation?

- ► Why not? "Lepton number" is only an accidental symmetry of the SM
- ► Neutrino oscillations: evidence of NP! ⇒ Majorana fermion
- ► $\Delta L = 2$ processes at the "crossroads" of many BSM constru-New theoretical ideas, with massive implications

 \Rightarrow addressing the BAU via leptogenesis!

Many processes to study, at very distinct energy scale

Impressive experimental prospects (in the near future...) and exciting new theoretical ideas & models! Experimental prospects: Schönert Zsigmond, O'Donnell Wonsak, Sorel

Theory overview & new ideas: Dekens, Herrero Fonseca

► All in all...

part of the reason we are here :)

LNV ($\Delta L = 2$) observables: neutrinoless double beta decays

★ LNV suggests the presence of Majorana states; opens the door for leptogenesis...

[Kamland-Zen, '16] Inese [Kamland-Zen, '16] to cover a

source=detector		NOW	MID-TERM	LONG-TERM
Ail Ruid	Xe-based TPC	EXO-200 NEXT-10	NEXT-100 PandaX-III	NEXT-2.0 PandaX-III 1t
- embedded - - - source	Liquid scintillator as a matrix	KamLAND-Zen 800 SNO+phase I		KamLAND2-Zen SNO+phase II
e Crystal	Germanium diodes	gerdahi MJD	LEGEND 200	LEGEND 1000
Source	Bolometers	AMoREpilot, I CUORE CURD-0, CURD-	AMoRE II Mo	QURD
These expendence deeply or f to cover a substa T _{1/2} > 10 ²⁷ –	riments ai ully the IC antial part 10²⁸ v - n	m to explor D region and the NO r	e I region	

LNV ($\Delta L = 2$) in semileptonic tau and meson decays

► A (small) subset of semileptonic tau and meson LNV bounds

	Current Bound			
LIVV decay	$\ell = e, \ \ell' = e$	$\ell=\mu,\ \ell'=\mu$		
$K^- \to \ell^- \ell'^- \pi^+$	6.4×10^{-10}	1.1×10^{-9}		
$D^- \to \ell^- \ell'^- \pi^+$	1.1×10^{-6}	2.2×10^{-8}		
$D^- \to \ell^- \ell'^- K^+$	9.0×10^{-7}	1.0×10^{-5}		
$B^- \to \ell^- \ell'^- \pi^+$	2.3×10^{-8}	4.0×10^{-9}		
$B^- \to \ell^- \ell'^- K^+$	3.0×10^{-8}	4.1×10^{-8}		
$B^- \to \ell^- \ell'^- \rho^+$	1.7×10^{-7}	4.2×10^{-7}		
$B^- \to \ell^- \ell'^- D^+$	2.6×10^{-6}	6.9×10^{-7}		

► Also LNV in 4-body meson decays and in (cLFV) $\mu^- \rightarrow e^+$ conversion...

Experimental status: BaBar, Belle

	Current Bound			
LIV UECay	$\ell = e$	$\ell=\mu$		
$\tau^- \to \ell^+ \pi^- \pi^-$	2.0×10^{-8}	$3.9 imes 10^{-8}$		
$\tau^- \to \ell^+ \pi^- K^-$	3.2×10^{-8}	4.8×10^{-8}		
$\tau^- \to \ell^+ K^- K^-$	3.3×10^{-8}	4.7×10^{-8}		

Future prospects: LHCb (Upgrade I & II), Belle II (upgrade),

TauFV, Super Charm-Tau factory... NA62, KOTO, KLEVER, ...

LNV at higher energies: $\Delta L = 2$ collider searches

★ Many NP models predict "heavy" Majorana mediators, produced on-shell at colliders
 ▶ Production and decay modes (LNV final states & signatures) ↔ model dependent
 E.g.: "observable" LNV ℓ[±]ℓ[±] + n jets from N_R, W[±]_R, Z_R, H, Δ^{±±}, Σ^{±±}, ...

LNV at higher energies: $\Delta L = 2$ collider searches

Many NP models predict "heavy" Majorana mediators, produced on-shell at colliders
 Production and decay modes (LNV final states & signatures) + model dependent

Brief summary

Sterile fermion extensions of the SM

Motivation & minimal theoretical constructions Experimental searches

LNV and new physics models with sterile fermions
 LNV observables - from 0ν2β to semileptonic decays
 Semileptonic meson and τ decays: effective Majorana masses

- ► Interference effects in LNV and cLFV semileptonic meson decays The role of CP phases & impact for experimental prospects
- **Further LNV (and cLFV) impact of sterile fermions**
- Overview & discussion

Many dedicated talks on the "LNV & LFV" session!

Sterile fermion extensions of the SM

Sterile fermions: beyond the 3-neutrino paradigm

► Sterile fermions: singlets under $SU(3)_c \times SU(2)_L \times U(1)_Y$

Interactions with SM fields: through mixings with active neutrinos (via Higgs) No bound on the number of sterile states, no limit on their mass scale(s) Present in several theoretical models accounting for ν masses and mixings

► Interest & phenomenological implications - strongly dependent on their mass!
eV scale ↔ extra neutrinos suggested by short baseline ν oscillation anomalies (oscillation results not explained within 3 flavour oscillation)

keV scale ↔ warm dark matter candidates; explain pulsar velocities (kicks) (extensive bounds to be complied with...)

MeV - TeV scale \leftrightarrow experimental testability! (and BAU, DM, m_{ν} generation...) (direct and indirect effects, both at the high-intensity and high-energy frontiers)

Beyond 10^9 GeV \leftrightarrow theoretical appeal: "standard" seesaw, BAU, GUTs

Sterile fermions: beyond the 3-neutrino paradigm

► Sterile fermions: singlets under $SU(3)_c \times SU(2)_L \times U(1)_Y$

Interactions with SM fields: through mixings with active neutrinos (via Higgs) No bound on the number of sterile states, no limit on their mass scale(s) Present in several theoretical models accounting for ν masses and mixings

Sterile fermions integral part of (low scale) mechanisms of ν mass generation

 \rightarrow Right-handed neutrinos (low scale seesaws: type I, ν MSM, ...)

$$\mathcal{L}_{\text{type I}} = -Y^{\ell} \, \bar{L}_L \, H \, e_R \, -Y^{\nu} \, \overline{\nu_R} \, \tilde{H} \, \nu_L \, -\frac{1}{2} \, \overline{\nu_R} \, M_N \, \nu_R^c \qquad \Rightarrow m_{\nu} \sim \frac{v^2 \, Y_{\nu}^2}{M_N}$$

 \rightarrow Other neutral fermions (ν_R + extra sterile states in Inverse Seesaw, ...)

$$\mathcal{L}_{\text{ISS}} = -Y^{\nu} \,\overline{\nu_R} \,\tilde{H} \,L - M_R \,\overline{\nu_R} \,X - \frac{1}{2} \mu_X \,\bar{X}^c \,X + \frac{1}{2} \mu_R \,\overline{\nu_R} \,\nu_R^c \qquad \Rightarrow m_{\nu} \sim \frac{v^2 \,Y_{\nu}^2}{M_R} \,\frac{\mu_X}{M_R}$$

Simplified "toy models" for phenomenological analyses: $SM + \nu_s$

"ad-hoc" construction (no specific assumption on mechanism of mass generation)

"Toy model" for phenomenological analyses: SM + ν_s

- ► Assumptions: 3 active neutrinos + 1 sterile state $n_L = (\nu_{Le}, \nu_{L\mu}, \nu_{L\tau}, \nu_s^c)^T$ interaction basis \iff physical basis $n_L = U_{4\times 4} \nu_i$ $U_{4\times 4}^T M U_{4\times 4} = \text{diag}(m_{\nu_1}, ..., m_{\nu_4})$ "Majorana mass": $\mathcal{L}_{toy} \sim n_L^T C M n_L$
- Active-sterile mixing $U_{\alpha i}$: rectangular matrix $\leftarrow U = U|_{3 \times 4}$ Left-handed lepton mixing \tilde{U}_{PMNS} : 3×3 sub-block, non-unitary! $U_{4 \times 4} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$
- Physical parameters: 4 masses [3 light (mostly active) + 1 heavier (mostly sterile) states]
 6 mixing angles [θ₁₂, θ₂₃, θ₁₃, & θ_{i4}] and 6 phases [(3 Dirac and 3 Majorana)]

► Modified charged (W^{\pm}) and neutral (Z^{0}) current interactions: $\mathcal{L}_{W^{\pm}} \sim -\frac{g_{w}}{\sqrt{2}} W_{\mu}^{-} \sum_{\alpha=e,\mu,\tau} \sum_{i=1}^{3+n_{S}} \mathbf{U}_{\alpha i} \bar{\ell}_{\alpha} \gamma^{\mu} P_{L} \nu_{i}$ $\mathcal{L}_{Z^{0}} \sim -\frac{g_{w}}{2\cos\theta_{w}} Z_{\mu} \sum_{i,j=1}^{3+n_{S}} \bar{\nu}_{i} \gamma^{\mu} \left[P_{L} (\mathbf{U^{\dagger}U})_{ij} - P_{R} (\mathbf{U^{\dagger}U})_{ij}^{*} \right] \nu_{j}$

Sterile fermions: experimental prospects

▶ Phenomenological impact: modified W^{\pm} charged currents and Z^0 , H neutral currents If sufficiently light, sterile ν s can be produced as final states

- Contributions to many processes and observables [low and high energies] Electroweak precision tests, cLFV, 0ν2β decays, rare meson decays (cLFV, LNV, LFUV), collider searches, beam dump experiments, cosmology...
- ▶ Current data already allowing to constrain ν_s parameter space: $[m_4, |U_{\alpha 4}U_{\beta 4}|]$

Sterile fermions: experimental prospects

▶ Phenomenological impact: modified W^{\pm} charged currents and Z^0 , H neutral currents If sufficiently light, sterile ν s can be produced as final states

Contributions to many processes and observables [low and high energies] Electroweak precision tests, cLFV, 0ν2β decays, rare meson decays (cLFV, LNV, LFUV), collider searches, beam dump experiments, cosmology...

LNV and New Physics models with sterile fermions: from $0\nu 2\beta$ to semileptonic decays

Sterile neutrinos: impact for LNV observables

► If sterile neutrinos are Majorana fermions, expect contributions to LNV processes

► Neutrinoless double beta decays $(0\nu 2\beta)$

$$m_{ee} \simeq \sum_{i=1}^{4} U_{ei}^2 p^2 \frac{m_i}{p^2 - m_i^2} \simeq \left(\sum_{i=1}^{3} U_{ei}^2 m_{\nu_i} \right) + p^2 U_{e4}^2 \frac{m_4}{p^2 - m_4^2}$$

 \blacktriangleright ν_s can strongly impact predictions for $|m_{ee}|$

⇒ augmented ranges for effective mass

for both cases of light neutrino spectra

(IO and NO)

Observation of 0ν2β signal in future experiments does not imply Inverted Ordering for light νs

[Abada, De Romeri and AMT, '14; ...; Giunti et al, '15 \leftarrow]

LNV and sterile fermions: semileptonic decays

What can we learn from experiment?

How should data be interpreted in view of

their (hypothetical) presence?

- ▶ On-shell ν_s : "resonant-enhancement" of $M_1 \to M_2 \ell_{\alpha}^{\pm} \ell_{\beta}^{\pm}$ and $\tau^{\pm} \to M_1 M_2 \ell^{\mp}$ decays
- ▶ Bounds from BaBar, Belle, LHCb; near future LHCb, Belle II, BES-III, NA62...
- Full update of LNV constraints on ν_s ([0.1 GeV, 10 GeV]) [1712.03984; see also Atre at al, '09]

- Prospects for observation:
 - ⇒ ν_s must decay inside the detector (sufficiently short-lived) ⇒ Sizeable #_{events} : BRs ~ $\mathcal{O}(10^{-8,-10})$

Non-negligible mixings!

- ▶ On-shell ν_s : "resonant-enhancement" of $M_1 \to M_2 \ell_{\alpha}^{\pm} \ell_{\beta}^{\pm}$ and $\tau^{\pm} \to M_1 M_2 \ell^{\mp}$ decays
- ▶ Bounds from BaBar, Belle, LHCb; near future LHCb, Belle II, BES-III, NA62...
- Full update of LNV constraints on ν_s ([0.1 GeV, 10 GeV]) [1712.03984; see also Atre at al, '09]

Evaluation of constraints from available semileptonic decays

 \Rightarrow bounds on distinct active-sterile mixings $|U_{\alpha 4} U_{\beta 4}|$ for corresponding ν_4 mass regime

LNV meson and tau decays via ν_s : prospects for discovery

[Abada, De Romeri, Lucente, Toma, AMT '18]

BRs of several LNV meson and tau decays close to current sensitivities

 \Rightarrow Certain τ and K LNV decay modes already in conflict with experimental data!

LNV meson and tau decays offer possibility to infer information on $m_{\nu}^{\ell_{\alpha}\ell_{\beta}}$

$$m_{\nu}^{\ell_{\alpha}\ell_{\beta}} = \left| \sum_{i=1}^{4} \frac{U_{\alpha i} m_{i} U_{\beta i}}{1 - m_{i}^{2}/p_{12}^{2} + i m_{i}\Gamma_{i}/p_{12}^{2}} \right|$$

- ▶ m_{ν}^{ee} best constraints from $0\nu 2\beta$
- ► New bounds on all $m_{\nu}^{\ell_{\alpha}\ell_{\beta}}$ entries $\lesssim \mathcal{O}(10^{-3}\text{GeV})$ $[m_{\nu}^{\tau\tau} \lesssim \mathcal{O}(10^{-2}\text{GeV})]$

[Abada, De Romeri, Lucente, Toma, AMT '18]

LNV meson and tau decays offer possibility to infer information on $m_{\nu}^{\ell_{\alpha}\ell_{\beta}}$

$$m_{\nu}^{\ell_{\alpha}\ell_{\beta}} = \left| \sum_{i=1}^{4} \frac{U_{\alpha i} m_{i} U_{\beta i}}{1 - m_{i}^{2}/p_{12}^{2} + i m_{i}\Gamma_{i}/p_{12}^{2}} \right|$$

- ▶ m_{ν}^{ee} best constraints from $0\nu 2\beta$
- ► New bounds on all $m_{\nu}^{\ell_{\alpha}\ell_{\beta}}$ entries $\lesssim \mathcal{O}(10^{-3}\text{GeV})$ $[m_{\nu}^{\tau\tau} \lesssim \mathcal{O}(10^{-2}\text{GeV})]$

Sterile neutrinos: impact for LNV meson 4-body decays

► Additional LNV meson observables - 4 body decays $M_1 \rightarrow M_2 \ell_{\alpha}^{\pm} \ell_{\beta}^{\pm} M_3$

Typically, heavier meson decays (e.g. $B^0 \rightarrow D^{*-} \mu^+ \mu^+ K^-$)

Also: lighter mesons to 4 leptons (e.g. $\pi^+ \rightarrow e^+ \bar{\nu}_{\mu} \mu^- e^+$)

Estimation of sterile neutrino contributions

LNV and sterile fermions: interference effects in semileptonic decays

What can we learn from experiment?

How should data be interpreted in view of

their (hypothetical) presence?

Sterile neutrinos: impact for LNV decays

- ► LNV (& cLFV) meson and tau decays in SM extended by Majorana states
 - \Rightarrow resonant enhancement of BRs from on-shell ν_s exchange
 - ⇒ several LNV decay modes close to (or even in conflict with) experimental data
- ► In the presence of a single sterile state:
 - $\Rightarrow \text{ identical widths for LNV and LNC processes (same-sign and opposite-sign dileptons)}$ $\Gamma^{\text{LNV}}(M \to M' \ell_{\alpha}^{\pm} \ell_{\beta}^{\pm}) = \Gamma^{\text{LNC}}(M \to M' \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp})$
 - \Rightarrow LNV decays not sensitive to Majorana CP phases
- ▶ What if LNV and cLFV decays are mediated via several (on-shell) Majorana ν_s ?
 - ⇒ Expect constructive & destructive (coherent) interference effects

in both LNV and LNC decays!

In particular,
$$R_{\ell_{\alpha}\ell_{\beta}} \equiv \frac{\Gamma_{M \to M'\ell_{\alpha}^{\pm}\ell_{\beta}^{\pm}}}{\Gamma_{M \to M'\ell_{\alpha}^{\pm}\ell_{\beta}^{\pm}}} \neq 1$$
 (for $\alpha \neq \beta$)

Interference effects in semileptonic cLFV & LNV decays

- ► Assume "3+2" toy model: 3 active neutrinos + 2 sterile states
- ► Enlarged mixing matrix, $U_{5\times5}$: $U_{\alpha i} = e^{-i\phi_{\alpha i}} |U_{\alpha i}|$, $\alpha = e, \mu, \tau$, and i = 4, 5

Introduce "relative phase", $\psi_{\alpha} = \phi_{\alpha 5} - \phi_{\alpha 4}$ (combination of Dirac and Majorana phases)

$$\left| \mathcal{A}_{\boldsymbol{M} \to \boldsymbol{M}' \boldsymbol{\ell}_{\boldsymbol{\alpha}}^{\pm} \boldsymbol{\ell}_{\boldsymbol{\beta}}^{\pm}}^{\mathbf{LNV}} \right|^{2} \propto \left| U_{\alpha 4} \right|^{2} \left| U_{\beta 4} \right|^{2} |f(M)|^{2} \left| 1 + \kappa e^{\mp i (\boldsymbol{\psi}_{\boldsymbol{\alpha}} + \boldsymbol{\psi}_{\boldsymbol{\beta}})} \right|^{2} \\ \left| \mathcal{A}_{\boldsymbol{M} \to \boldsymbol{M}' \boldsymbol{\ell}_{\boldsymbol{\alpha}}^{\pm} \boldsymbol{\ell}_{\boldsymbol{\beta}}^{\pm}}^{\mathbf{LNC}} \right|^{2} \propto \left| U_{\alpha 4} \right|^{2} \left| U_{\beta 4} \right|^{2} |g(M)|^{2} \left| 1 + \kappa' e^{\mp i (\boldsymbol{\psi}_{\boldsymbol{\alpha}} - \boldsymbol{\psi}_{\boldsymbol{\beta}})} \right|^{2} \\ \right|^{2}$$

Sizeable interference effects: (i) important overlap between heavy ν_s contributions

(ii) similar strength of ν_s contributions

$$\Rightarrow \Delta M \ll M \text{ and } \Delta M < \Gamma_N, \quad |\kappa| \simeq |\kappa'| = \frac{|U_{\alpha 5} U_{\beta 5}^*|}{|U_{\alpha 4} U_{\beta 4}^*|} \left(1 + \mathcal{O}\left(\frac{\Delta M}{\Gamma_N}\right)\right)$$
(maximal effects for $|\kappa| \sim |\kappa'| \approx 1$)

 $\psi_{\alpha} + \psi_{\beta} \iff \text{``LNV''}$ (Majorana and Dirac phases) $\psi_{\alpha} - \psi_{\beta} \iff \text{``LNC''}$ (Dirac phases for cLFV $\alpha \neq \beta$)

Interference effects: illustrative example

► Ratio of LNV to LNC BRs (different flavour final states): $R_{\ell_{\alpha}\ell_{\beta}} \equiv \frac{\Gamma_{M \to M' \ell_{\alpha}^{\pm} \ell_{\beta}^{\pm}}{\Gamma_{M \to M' \ell_{\alpha}^{\pm} \ell_{\beta}^{\pm}}$ for distinct regimes of $\Delta M < \Gamma_N$

 $K \to \pi e \mu$:

 $M \sim 350 \text{ MeV}$ and $|U_{\ell 4}| \approx |U_{\ell 5}| = 10^{-5}$

$$\psi_{lpha} = \phi_{lpha 5} - \phi_{lpha 4}$$
, $U_{lpha i} = |U_{lpha i}| e^{-i \phi_{lpha i}}$

(combination of Dirac and Majorana phases)

• $\psi_{\alpha} = \psi_{\beta}$: interference effects only in LNV

α ≠ β, R_{ℓαℓβ} ≠ 1 ⇒ constructive & destructive interference; important cancellations!
 In agreement with collider studies [Gluza et al '15, Das et al '17]

Interference effects: same-sign vs opposite-sign dileptons @LHC

At colliders, compare number of SS vs. number of OS dileptons: $R_{\ell_{\alpha}\ell_{\beta}} \equiv \frac{N_{\ell_{\alpha}\ell_{\beta}}^{SS}}{N_{\ell_{\alpha}\ell_{\beta}}^{OS}}$

► TeV scale seesaw realisations, embedded in generic Left-Right symmetric models

Sterile states from W_R decays: $W_R^{\pm} \to N_R \ell^{\pm}$

 \blacktriangleright High degree of degeneracy for N_{Ri} ... (determined by the size of Yukawa couplings)

Type I: $R_{\ell\ell}$ determined by **CP phases**; **ISS:** $R_{\ell\ell}$ governed by **LNV parameter** μ_R

 $K^+ \rightarrow \pi^- e^+ \mu^+$ $K^+ \rightarrow \pi^+ e^{\pm} \mu^{\mp}$ $BR \times 10^{10}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ • $\psi_{\alpha} = 0$ $\psi_e = \psi_\mu = \pi/2$ -5 ψ_{μ} ψ_{μ} $\star \psi_e = -\psi_\mu = \pi/2$ -4 $\blacktriangle \ \psi_e = 0, \ \psi_\mu = \pi/2$ -3 $\forall \quad \psi_e = 0, \ \psi_\mu = 0$ $-\frac{\pi}{2}$ $-\frac{\pi}{2}$ -2 $\blacktriangleleft \psi_e = \pi/2, \ \psi_\mu = 0$ \models exp. bounds $-\pi/2$ 0 $\pi/2$ $-\pi/2$ $\pi/2$ $-\pi$ 0 π π $\psi_{\rm e}$ $\psi_{\rm e}$ [Abada, Hati, Marcano, AMT '19]

- ► $\psi_e = \psi_\mu$: from LNV BRs in conflict with data [•] to $BR(K^+ \to \pi^- e^+ \mu^+) \approx 0$ [■] $\psi_e = -\psi_\mu$: from LNC/LFV BRs in conflict with data [•] to $BR(K^+ \to \pi^- e^\pm \mu^\mp) \approx 0$ [★]
- Understanding experimental searches (and learning about nature of mediators)

 \Rightarrow thorough analyses of $R_{e\mu}$ - take into account all 4 (non-SM) decay modes! $K^+ \rightarrow \pi^- e^+ \mu^+, \ K^+ \rightarrow \pi^- e^+ e^+, \ K^+ \rightarrow \pi^- \mu^+ \mu^+$ and $K^+ \rightarrow \pi^+ e^{\pm} \mu^{\mp}$

▶ Hints on sterile Majorana states: $\#_{\nu_s}$ and CP phases

Illustrative ("extreme") cases in Kaon decays: $R_{e\mu} = 0, \infty$ and 1

R_{eµ} = 0 [■]: BR(K⁺ → π⁻e⁺µ⁺)≈ 0
 No LNV modes observed, possibly LNC
 K⁺ → π⁺e[±]µ[∓]
 ⇒ mediated by a Dirac neutrino... OR
 ⇒ mediated by 2 interfering Majorana states
 maximal destructive interference in LNV mode
 (E.g. low-scale seesaws with
 approximate lepton number conservation)

 $R_{\ell_{\alpha}\ell_{\beta}} \equiv \frac{\Gamma_{M \to M'\ell_{\alpha}^{\pm}\ell}}{\Gamma_{M \to M'\ell_{\alpha}^{\pm}\ell}^{\mathrm{LNC}}}$

▶ Hints on sterile Majorana states: $\#_{\nu_s}$ and CP phases

 $R_{\ell_{\alpha}\ell_{\beta}} \equiv \frac{\Gamma_{M \to M'\ell_{\alpha}^{\pm}\ell_{\beta}^{\pm}}}{\Gamma_{M \to M'\ell_{\alpha}^{\pm}\ell_{\beta}^{\pm}}}$ Illustrative ("extreme") cases in Kaon decays: $R_{e\mu} = 0, \infty$ and 1

 $\blacktriangleright R_{e\mu} \gg 1 \ [\bigstar]: \ \mathsf{BR}(K^+ \to \pi^+ e^{\pm} \mu^{\mp}) \approx 0$ Observation of LNV modes ($\alpha \neq \beta$) ⇒ incompatible with Dirac states... ⇒ possibly mediated by 2 Majorana states: (maximal) constructive interference for $K^+ \rightarrow \pi^- e^+ \mu^+$ (maximal) destructive interference in LNC mode

and same-flavour LNV modes

 $K^+ \rightarrow \pi^- e^+ e^+, K^+ \rightarrow \pi^- \mu^+ \mu^+$

▶ Hints on sterile Majorana states: $\#_{\nu_s}$ and CP phases

 $R_{\ell_{\alpha}\ell_{\beta}} \equiv \frac{M \to M' \ell_{\alpha}^{\pm} M}{\Gamma_{M \to M' \ell_{\alpha}^{\pm}}^{\text{LNC}}}$ Illustrative ("extreme") cases in Kaon decays: $R_{e\mu} = 0$, ∞ and 1

 $\blacktriangleright R_{e\mu} \approx 1 \ [\bullet]$: R_{eµ} $\mathsf{BR}(K^+ \to \pi^- e^+ \mu^+) \sim \mathsf{BR}(K^+ \to \pi^+ e^\pm \mu^\mp)$ Possible observation of all LNV & cLFV modes 0.33 ⇒ LNV incompatible with Dirac state! ⇒ Cannot disentangle between: 2 Majorana states (constructive interferences) *OR* **1** Majorana state ("larger" $|U_{\alpha 4}|$)

▶ Hints on sterile Majorana states: $\#_{\nu_s}$ and CP phases

Illustrative ("extreme") cases in Kaon decays: $R_{e\mu} = 0, \infty$ and 1

► $R_{e\mu} \approx 1$ [▲, ◀]: Partial cancellation in distinct-flavour modes $BR(K^+ \rightarrow \pi^- e^+ \mu^+) \sim BR(K^+ \rightarrow \pi^+ e^\pm \mu^\mp)$ \Rightarrow Study same-flavour LNV modes Substantiate 2 ν_s hypothesis and hint on CP phases ψ_e and ψ_{μ} E.g. $[\blacktriangleleft]$ observable $R_{e\mu} \approx 1$ potentially observable $K^+ \rightarrow \pi^- \mu^+ \mu^+$ (maximal) destructive interference $K^+ \rightarrow \pi^- e^+ e^+$

 $R_{\ell_{\alpha}\ell_{\beta}} \equiv rac{M \to M' \ell_{\alpha}^{\pm} \ell}{\Gamma^{\mathrm{LNC}}}$

▶ Hints on sterile Majorana states: $\#_{\nu_s}$ and CP phases

Illustrative ("extreme") cases in Kaon decays: $R_{e\mu} = 0, \infty$ and 1

► If neither mode observed [▼] $K^+ \to \pi^- e^+ \mu^+$ and $K^+ \to \pi^+ e^\pm \mu^\mp$ (maximal destructive interference) \Rightarrow Crucial role of same-flavour LNV modes: potentially observable $K^+ \to \pi^- \mu^+ \mu^+$ and $K^+ \to \pi^- e^+ e^+$

 $R_{\ell_{\alpha}\ell_{\beta}} \equiv \frac{\Gamma_{M \to M'\ell_{\alpha}^{\pm}\ell}^{\mathrm{LNV}}}{\Gamma_{M \to M'\ell_{\alpha}^{\pm}\ell}^{\mathrm{LNC}}}$

► Generic analysis, applicable to *all* semileptonic LNV meson decays

• Interpretation of LNV searches under hypothesis of SM + Majorana ν_s :

 \Rightarrow allow for multiple sterile states, and possible interference effects

 $(\Delta M \ll \Delta \Gamma$, non-vanishing Dirac & Majorana CP phases)

- Experimental searches [NA62]: negative LNV/LNC results do not necessarily imply increasingly stringent bounds on |U_{α4}|!
- Observation of LNC only: Majorana nature not ruled out!

Other observables sensitive to the Majorana nature of sterile neutrinos...

CP asymmetries in LNV decays: $\mathcal{A}_{CP}^{\alpha\beta} \equiv \frac{\Gamma(M^- \to M'^+ \ell_{\alpha}^- \ell_{\beta}^-) - \Gamma(M^+ \to M'^- \ell_{\alpha}^+ \ell_{\beta}^+)}{\Gamma(M^- \to M'^+ \ell_{\alpha}^- \ell_{\beta}^-) + \Gamma(M^+ \to M'^- \ell_{\alpha}^+ \ell_{\beta}^+)}$ \Rightarrow In certain regimes, $\mathcal{A}_{CP}^{\alpha\beta} \approx 1$ [Cvetic et al, '14 & '15]

And in other (unexpected) sectors...

Leptonic EDMs, sterile neutrinos and cLFV

Sterile neutrinos: impact for leptonic EDMs

Electron EDM: increasingly stronger bounds from paramagnetic

atoms (e.g. TI, Cs) and molecules (HfF⁺, ThO, ...)

▶ New ACME result '18: $|d_e|/e \lesssim 1.1 imes 10^{-29}$ cm

mid-term increase of **10-20 in sensitivity** (developments of the ACME technique)

- ► Majorana (and Dirac) phases ⇒ lepton EDMs
- \blacktriangleright Non-vanishing contributions: at least two sterile ν
- ▶ $|d_e|/e \ge 10^{-30}$ cm for $m_{\nu_{4,5}} \sim [100 \text{ GeV}, 100 \text{ TeV}]$

[Abada and Toma, '15]

- Independent of active-sterile mixings Majorana contribution is dominant!
- **EDM observation:** suggest new sources of CPV \Rightarrow Majorana ν s? \rightsquigarrow Leptogenesis??

Sterile neutrinos: ... and for cLFV

- ► Hints on Majorana nature from (flavour conserving) EDMs ~→ sizeable contributions States too heavy for "on-shell" production in meson decays...
- ► Expect important impact for cLFV observables (high-intensity)!

[experimental review by L. Galli]

► Example: three-body decays $\ell_i \rightarrow 3\ell_j$ (\square) and conversion in Nuclei $\mu - e$ (\blacksquare)

[Abada, De Romeri and AMT, '16]

For sterile states above EW scale, sizeable contributions, well within experimental reach Mu3e, COMET, Mu2e, ...

Concluding remarks

New Physics and lepton observables

- Confirmed observations suggest the need to go beyond the SM Other than ν-masses, many experimental "tensions" nested in lepton-related observables
- ► Lepton physics might offer valuable hints in constructing and probing NP models
- Lepton number violation: signal Majorana states, hints on nature of neutrinos, necessary ingredient to a leptogenesis explanation of the BAU...
- Majorana sterile neutrinos appealing (minimal) SM extension
 Depending on the regime, important contributions to "leptonic" NP observables

Hypothesis that can motivate a "re-interpretation" of experimental data:

light ν spectrum ordering from $0\nu 2\beta$,

constraints on active-sterile mixings from meson decays Dirac vs Majorana nature from non-observation of LNV modes

New Physics and lepton observables

- Confirmed observations suggest the need to go beyond the SM Other than *v*-masses, many experimental "tensions" nested in lepton-related observables
- ► Lepton physics might offer valuable hints in constructing and probing NP models
- Lepton number violation: signal Majorana states, hints on nature of neutrinos, necessary ingredient to a leptogenesis explanation of the BAU...
- Majorana sterile neutrinos appealing (minimal) SM extension
 Depending on the regime, important contributions to "leptonic" NP observables
- Exciting near-future @ "experimental" front! Active searches (and analyses) to unveil New (leptonic) Physics

► Backup

LNV in semileptonic decays: current bounds

L NV decay	Current bound				
	$\ell_{lpha} = e, \ \ell_{eta} = e$	$\ell_{lpha}=e,\;\ell_{eta}=\mu$	$\ell_lpha=\mu,\ell_eta=\mu$		
$K^- \to \ell_\alpha^- \ell_\beta^- \pi^+$	6.4×10^{-10}	5.0×10^{-10}	1.1×10^{-9}		
$D^- \to \ell_\alpha^- \ell_\beta^- \pi^+$	1.1×10^{-6}	2.0×10^{-6}	2.2×10^{-8}		
$D^- \to \ell_\alpha^- \ell_\beta^- K^+$	9.0×10^{-7}	1.9×10^{-6}	1.0×10^{-5}		
$D^- \to \ell_\alpha^- \ell_\beta^- \rho^+$			5.6×10^{-4}		
$D^- \to \ell_{\alpha}^- \ell_{\beta}^- K^{*+}$			8.5×10^{-4}		
$D_s^- \to \ell_\alpha^- \ell_\beta^- \pi^+$	4.1×10^{-6}	8.4×10^{-6}	1.2×10^{-7}		
$D_s^- \to \ell_\alpha^- \ell_\beta^- K^+$	5.2×10^{-6}	6.1×10^{-6}	1.3×10^{-5}		
$D_s^- \to \ell_\alpha^- \ell_\beta^- K^{*+}$			1.4×10^{-3}		
$B^- \to \ell_\alpha^- \ell_\beta^- \pi^+$	2.3×10^{-8}	1.5×10^{-7}	4.0×10^{-9}		
$B^- \to \ell_\alpha^- \ell_\beta^- K^+$	3.0×10^{-8}	1.6×10^{-7}	4.1×10^{-8}		
$B^- \to \ell_\alpha^- \ell_\beta^- \rho^+$	1.7×10^{-7}	4.7×10^{-7}	4.2×10^{-7}		
$B^- \to \ell_\alpha^- \ell_\beta^- D^+$	2.6×10^{-6}	1.8×10^{-6}	6.9×10^{-7}		
$B^- \to \ell_\alpha^- \ell_\beta^- D^{*+}$			2.4×10^{-6}		
$B^- \to \ell_\alpha^- \ell_\beta^- D_s^+$			5.8×10^{-7}		
$B^- \to \ell_\alpha^- \ell_\beta^- K^{*+}$	4.0×10^{-7}	3.0×10^{-7}	5.9×10^{-7}		
LNV matrix $m_{ u}$	$m_{ u}^{ee}$	$m_{ u}^{e\mu}$	$m_{ u}^{\mu\mu}$		

LNV in semileptonic decays: current bounds

cl EV decay	Current bound					
	$\ell_{\alpha} = e, \ \ell_{\beta} = \mu$	ℓ	$\ell_{\alpha} = e, \ \ell_{\beta} = \tau$	$\ell_{lpha} = \mu, \ \ell_{eta} =$	au	
$K^+ \to \ell_\alpha^\pm \ell_\beta^\mp \pi^+$	$5.2 \times 10^{-10} (1.3 \times 10^{-10})$	$)^{-11})$				
$D^+ \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp} \pi^+$	$2.9(3.6) \times 10^{-6}$					
$D^+ \to \ell^\pm_\alpha \ell_\beta^{\mp} K^+$	$1.2(2.8) \times 10^{-6}$					
$D_s^+ \to \ell_\alpha^\pm \ell_\beta^\mp \pi^+$	$1.2(2.0) \times 10^{-5}$					
$D_s^+ \to \ell_\alpha^\pm \ell_\beta^\pm K^+$	$14(9.7) \times 10^{-6}$					
$B^+ \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp} \pi^+$	0.17×10^{-6}		75×10^{-6}	72×10^{-6}		
$B^+ \to \ell^{\pm}_{\alpha} \ell_{\beta}^{\mp} K^+$	91×10^{-6}		30×10^{-6}	48×10^{-6}		
$B^+ \to \ell^{\pm} \ell_{\beta}^{\mp} K^{*+}$	1.4×10^{-6}	10-4	⁴ <u>⊨</u>	1		
$B^0 \to \ell_\alpha^\pm \ell_\beta^\mp \pi^0$	0.14×10^{-6}		Ē			■ PDG ● BABAR
$B^0 \to \ell^{\pm}_{\alpha} \ell_{\beta}^{\mp} K^0$	0.27×10^{-6}	$\begin{bmatrix} 10^{-5} \\ 10^{-5} \end{bmatrix}$	5 			▲ LHCb ▼ Belle
$B^0 \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp} K^{*0}$	0.53×10^{-6}	() 10 ⁻⁰	6			I I I
				1 1 1 1 1 1	A	I I I
			7	1 1 1	•	
		ancl			• *	
		$\mathbf{\ddot{B}}$ 10 ⁻⁸	8			I I
		10 ⁻⁹	nu Kee Cee	nu	nu nu nu nu nu nu nu nu nu nu nu nu nu n	
			$ \begin{array}{c} \downarrow \\ \downarrow $		$B \rightarrow K = B \rightarrow L = B \rightarrow L = B \rightarrow D$	

Experimental status - present bounds:

Collaboration	year	Process	Bound
PSI/SINDRUM	1998	μ^- +Ti $\rightarrow e^+$ +Ca*	3.6×10^{-11}
PSI/SINDRUM	1998	μ^- +Ti $ ightarrow e^+$ +Ca	1.7×10^{-12}

Experimental status - future prospects:

Recent studies: **best sensitivity** associated with **Calcium**, **Sulphur** and **Titanium targets** $CR(\mu^{-} - e^{+}) < O(\text{ few} \times 10^{-15})$ for ⁴⁸Ti (both LNC and LNV searches) [Yeo et al, '17] For Aluminium targets improvement of current sensitivity maybe very hard (even factor 10)...

Minimal models of m_{ν} : signs of New Physics?

► In the Standard Model: (strictly) massless neutrinos conservation of total lepton number & lepton flavours tiny leptonic EDMs (at 4-loop level.. $d_e^{\text{CKM}} \le 10^{-38}e \text{ cm}$)

Extend the SM to accommodate $\nu_{\alpha} \leftrightarrow \nu_{\beta}$

Assume most minimal extension $SM_{m_{\nu}}$ [$SM_{m_{\nu}}$ = "ad-hoc" m_{ν} (Dirac), U_{PMNS}]

▶ In the $SM_{m_{\nu}}$: (total) Lepton number conserved; what about lepton flavours? And CP?

[Petcov, '77]

Possible - yes... but not observable!!

► SM_{m_ν} - observable EDMs? Contributions from δ_{CP} (2-loop)... still $d_e^{lep} \leq 10^{-35} e$ cm