

Searches for new heavy gauge bosons at the LHC

Tetiana Berger-Hryn'ova (LAPP) on behalf of the ATLAS and CMS collaborations

> BLV 2019 22/10/2019

New heavy gauge bosons

Appear in many extensions of Standard Model:

- Theories with Extra Dimensions
- Theories with strongly-coupled sector
- Models with SM group extensions
 - Neutral gauge boson (Z'), singlet or triplet
 - decays to II, jj, tt, WW, ZH
 - Charged gauge boson:
 - W', triplet, coupling to left-handed fermions

- decays to Iv, jj, tb, WZ, WH, Wγ

- W_R , hypercharged singlet, couples to right-handed fermions
 - decays to Iv_R , jj, tb, WZ, WH, WY

New heavy gauge bosons

Appear in many extensions of Standard Model

- Theories with Extra Dimensions
- Theories with strongly-coupled sector
- Models with SM group extensions
 - Neutral gauge boson (Z'), singlet or triplet
 - decays to **II**, jj, tt, **WW ('JJ')**, ZH
 - Charged gauge boson:
 - W', triplet, coupling to left-handed fermions
 - decays to lv, jj, tb, WZ ('JJ'), WH, Wy
 - W_R , hypercharged singlet, couples to right-handed fermions
 - decays to $\mathbf{V}_{\mathbf{R}}$, jj, tb, WZ, WH, Wy

This talk: focus on results from 2019 + combinations

+ combinations

Heavy Vector Triplet (HVT)

- Simplified Heavy Vector Triplet (HVT) model
 - Triplet of colorless vector bosons W'^{\pm} , Z'
 - 4 free parameters (in universal case):
 - g_q and g_l : Universal coupling strength to quarks and leptons
 - $g_{\mbox{\tiny H}}$: Coupling strength to Higgs field \rightarrow enables diboson decays
 - $m_{V^{\prime}}$: mass of W' and Z' bosons
 - Includes Sequential SM (SSM) W': $g_q=g_l=0.652 \& g_H=0$ (there is also a Z' associated to this coupling point, but not SSM Z' which is a singlet)

More models

Heavy Vector Singlets Simplified approach

- In universal case 6 parameters (g_H , g_I , g_e , g_q , g_u , g_d , $m_{V'}$)
- Too many parameters to be usable

SSM Z'

- The same fermion couplings at the SM Z
- Width Γ/m(Z')=3%
- Used as benchmark only

Grand Unification Model E6

• E6 gauge group can be broken into SU(5) and two U(1): ψ and χ

- $Z'(\theta_{E6}) = Z'_{\psi} \cos(\theta_{E6}) + Z'_{\chi} \sin(\theta_{E6})$, where mixing angle $0 \le \theta_{E6} < \pi$

- Width of resonances varies from 0.6% for Z' $_{\psi}$ to 1.2% for Z' $_{\chi}$
- E6 gauge group can be broken into SU(4), $SU(2)_L$, $SU(2)_R$ and a U(1)

– This results in so-called left-right symmetric models with $W_{\mbox{\tiny R}}$ and various Z's

$Z' \rightarrow dileptons (l=e, \mu)$

Phys. Lett. B 796 (2019) 68, CMS-PAS-EXO-19-019

$Z' \rightarrow dileptons (l=e, \mu)$

- Inclusive dilepton selection
- - ATLAS Γ=0-10%; CMS Γ=0.6%
- Background model:
 - CMS: discovery MC-based; limit sliding window fit
 - ATLAS: global m_{II} spectra fit in data (0.25-6TeV)
- No evidence for new II resonances in Run 2 data

$Z' \rightarrow dileptons (l=e, \mu)$

- Observed limits on $Z'_{\psi} \rightarrow II$:
 - CMS 4.56, ATLAS 4.5 TeV
- Easily reinterpretable to any model
 - ATLAS fiducial σ×B limits applicable to spin-0/1/2 signals
 - CMS efficiency ee (µµ) 60-67 (93)%
 - Available in ee and µµ channels
- No unfolded results available yet, but possibility to "fold" new BSM models
 - Parametrisation of dilepton resolution as a function of $m_{\mbox{\tiny II}}$ available on HEPdata

Phys. Rev. D 100 (2019) 052013

W'→ Iv (I=e, µ)

- Lepton +Etmiss requirement
 - E_T^{miss} = | $\Sigma_{vec}p_T$ (signal leptons + photons + jets) | +(soft term)
 - Veto on second isolated lepton
 - Transverse mass:

$$m_{\rm T} = \sqrt{2 \, p_{\rm T} \, E_{\rm T}^{\rm miss} \, (1 - \cos \phi_{\ell \nu})}$$

- MC used for all bkgs except for fake electrons contributions
- Global significance for lowest p-value
 - ev (µv) at m(W') = 625 GeV (200
 GeV): 1.3 (0.4) standard
 deviations.
 - Iv at m(W') = 625 GeV is -0.5 standard deviations.
- Interference between W' signal and SM Drell-Yan background is neglected

W'→ Iv (I=e, µ)

- Provided model-indepedent single-bin cross-section limits (N_{sig}/Lumi)
 - m_T^{min} varies in 0.13(0.11)-5.127GeV

range for $ev(\mu v)$ channels

Generic cross-section limits for Γ/M=1-15% in 0.15-6TeV range

11

$V' \rightarrow JJ (V'=Z' \text{ or } W')$

- High momentum hadronic decays of the W/Z are very collimated use large R = 0.8 or 1 fat jets
- Main background: QCD multijets
- JHEP 09 (2019) 091 and arXiv:1906.05977

ATLAS V' \rightarrow JJ (V'=Z' or W')

 Granularity limits of calorimeter – use angular track information to improve spatial resolution

(Track-CaloClusters, TCC)

- Remove soft components from pileup (trimming)
- New W/Z boson taggers use jet substructure (jet mass, D₂ and number of tracks)
 - charged hadron multiplicity to reduce multi-jet background with radiated gluon that can mimic 2 prong structure

CMS V' \rightarrow JJ (V'=Z' or W')

10⁻³

 10^{-4}

1500 2000 2500 3000 3500 4000

4500 5000 m_{w'} [GeV]

- 3D fit in m_{iet1}, m_{iet2} and m_{ii}
- No excess over background stimation
- CMS limits m(W'_{HVT})>3.8TeV (77fb⁻¹)
 - The same as ATLAS limit on 140fb-1
 - Limits on Z'_{HVT} also available

Phys. Lett. B 798 (2019) 134942

$W_R \rightarrow IN_R \rightarrow IIqq$

- Framework of L-R symmetric models
 - SM-singlet heavy neutrinos $N_{\mbox{\tiny R}}$
- Focus on $m(N_R)/m(W_R) \le 0.1$
 - N_R can be highly boosted
 - quarks merge: large-R jets
 - electrons: $m(N_R) = m(J)$
 - muons: $p(N_R) = p(J)+p(\mu_2)$
- SR: $m(W_R)>2$ TeV, same-flavour leptons, single bin search
 - dominant bkg is ttbar, fitted in $m(W_R) < 2$ TeV, extrapolated to SR
- Excluded region extends to $m(W_R) \sim 5$ TeV for both channels, for $m(N_R)$ of 0.4-0.5 TeV
- Much more sensitive with respect to the resolved channel at small $N_{\rm R}$ masses (JHEP 01 (2019) 016)
- Muon channel in backup

Combinations

PRD 98(2018)052008 and PLB 798 (2019) 134952

- Heavy new resonances might decay into various final states
- Combination allows to increase sensitivity

Combinations

- Gain from statistical combination important where VV/VH and II/Iv are similarly sensitive
 - VV/VH: Excludes large $g_{\rm H}$ regions; branching fracti ons \rightarrow 0 for $g_{\rm H} \rightarrow 0$
 - Iv/II: Provides sensitivity for small $g_{\rm H}$ and high $g_{\rm F}$

- At high mass single channel full Run 2 limits from W' \rightarrow Iv are stronger than combination in certain areas of phase space
- Important to keep up & extend this effort to include jj, bbar, ttbar, ττ etc. channels

Conclusions

- Not many full Run 2 results yet directly relating to BLV in the sector of vector resonances
- These and other analyses can be found at
 - http://cms.web.cern.ch/news/cms-phy sics-results
 - https://twiki.cern.ch/twiki/bin/view/Atl asPublic
- More ATLAS and CMS results are soon to come
- Stay tuned!

THANK YOU!

Backups

- Excluded region extends to $m(W_R) \sim 5$ TeV for both channels, for $m(N_R)$ of 0.4-0.5 TeV
- Much more sensitive with respect to the resolved channel at small $N_{\mbox{\tiny R}}$ masses (JHEP 01 (2019) 016)

ATLAS V' \rightarrow JJ (V'=Z' or W')

- Granularity limits of calorimeter use angular track information to improve spatial resolution (Track-CaloClusters, TCC)
 - Remove soft components from pileup (trimming)
- New W/Z boson taggers use jet substructure (jet mass, D₂ and number of tracks)
 - charged hadron multiplicity to reduce multi-jet background with radiated gluon that can mimic 2 prong structure

Eur. Phys. J. C (2016) 76:154

Diagram from N. Illic LHCP 2019

$$e_{2}^{(\beta)} = \frac{1}{p_{TJ}^{2}} \sum_{1 \le i < j \le n_{J}} p_{Ti} p_{Tj} R_{ij}^{\beta}, \qquad \text{Energy}$$

$$e_{3}^{(\beta)} = \frac{1}{p_{TJ}^{3}} \sum_{1 \le i < j < k \le n_{J}} p_{Ti} p_{Tj} p_{Tk} R_{ij}^{\beta} R_{ik}^{\beta} R_{jk}^{\beta} \qquad \text{ratios}$$

CMS V' \rightarrow JJ (V'=Z' or W')

- Jets are groomed with soft-drop (modified mass-drop) tagger, removing soft radiation constituents
 - Jet mass from 4-momentum of groomed jet
- Use "designed decorrelated tagger" (DDT) method to decorrelate nsubjettiness ratio from jet mass and p_T

$$\begin{aligned} \tau_{N} &= \frac{1}{r_{0}} \sum_{k} p_{\mathrm{T},k} \min(\Delta R_{1,k}, \Delta R_{2,k}, \dots, \Delta R_{N,k}), \\ r_{0} &= R_{0} \sum_{k} p_{\mathrm{T},k} \\ \tau_{21} &= \tau_{2}/\tau_{1} \\ \tau_{21}^{\mathrm{DDT}} &= \tau_{21} - M \rho', \\ \rho' &= \ln(m_{\mathrm{jet}}^{2}/(p_{T}\mu)) \end{aligned} \qquad \begin{array}{c} \overbrace{00}^{0} \\ \overbrace{00}^{0} \\ 10^{-1} \\ 10^$$

> 1126 GeV

0.4

0

0.2

< m_{iet} < 215 GeV

0.6

EPJC 77 (2017) 636

