New Paths to Baryon Number Violation by Two Units and Their Implications

Susan Gardner

Department of Physics and Astronomy
University of Kentucky
Lexington, KY

Based on work in collaboration with Xinshuai Yan (U. Kentucky→CCNU)

BLV 2019 IFT, Madrid October 24, 2019

Perspective

Experiment & observation reveal non-zero V masses, a cosmic BAU, dark matter, dark energy.

Experimental limits on |ΔB|=1 processes are severe;

|ΔB|=2 processes can be of distinct origin & important.

[Marshak and Mohapatra, 1980; Babu & Mohapatra, 2001 & 2012; Arnold, Fornal, & Wise, 2013]

 $|\Delta B|$ =2 &/or $|\Delta L|$ =2 interactions (w/ B-L violation) speak to fundamental Majorana dynamics

Both (and much more!) appear in a SO(10) GUT, e.g., but can they be connected with minimal ingredients?

Are there new ways of showing that a "Majorana v" must exist?

On Neutrinoless Double Beta $(0v \beta\beta)$ decay

If observed, the v has a Majorana mass

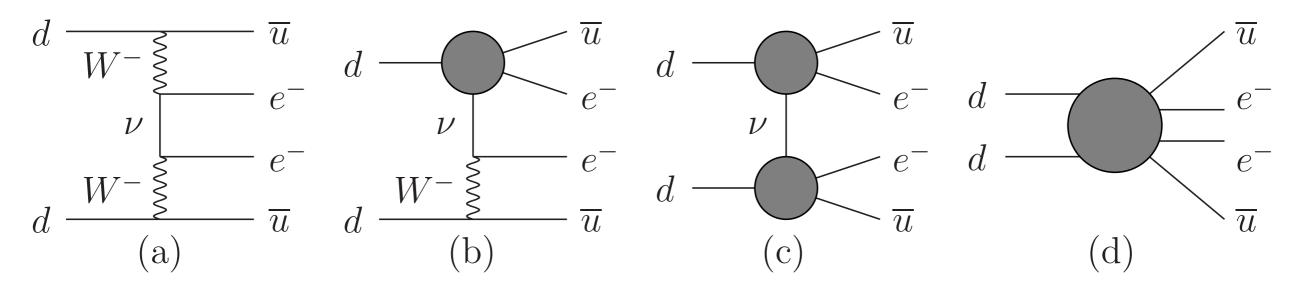
[Schechter & Valle, 1982]

 $0\nu~\beta\beta$ can be mediated by a dimension 9 operator:

 $\mathcal{O} \propto \bar{u}\bar{u}dd\bar{e}\bar{e}$

(or $\pi^- \pi^- e^- e^-$)

"mass mechanism"



"long range"

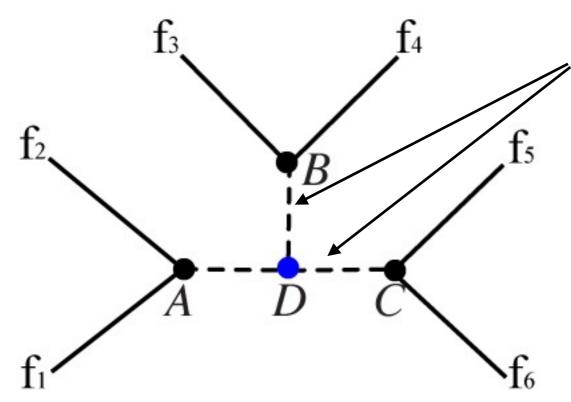
"short range"

[Bonnet, Hirsch, Ota, & Winter, 2013]

0ν ββ Decay in Nuclei

Can be mediated by "short-" or "long"-range mechanisms

The "short-range" mechanism involves new B-L violating dynamics; e.g.,



S or V that carries B or L

For choices of fermions f_i this decay topology can yield $n-\overline{n}$ or 0v $\beta\beta$ decay

[Bonnet, Hirsch, Ota, & Winter, 2013]

Can we relate the possibilities in a data-driven way?

Yes! [S.G. & Xinshuai Yan, arXiv: 1808.05288, PLB 2019]

Models with $|\Delta B|=2$ Processes Enter minimal scalar models without proton decay

Already used for $n \to \bar{n}$ oscillation without p decay [Arnold, Fornal, Wise, PRD, 2013]

Note limits on $|\Delta B|=1$ processes are severe! E.g., $\tau(N\rightarrow e^+\pi)=8.2\times 10^{33}$ yr [p] @ 90% CL

Add new scalars Xi without N decay at tree level

Also choose X_i that respect SM gauge symmetry and also under interactions $X_iX_jX_k$ or $X_iX_jX_kX_l$, etc. — cf. "hidden portal" searches: possible parameters (masses, couplings) are limited by experiment

Scalars without Proton Decay

That also carry B or L charge

 $Q_{em} = T_3 + Y$

Note

SU(3)

rep'ns

Scalar-fermion couplings

Scalar	SM Representation	В	L	Operator(s)	$\boxed{[g_i^{ab}?]}$
$\overline{X_1}$	(1, 1, 2)	0	-2	Xe^ae^b	[S]
X_2	(1,1,1)	0	-2	XL^aL^b	[A]
X_3	(1, 3, 1)	0	-2	XL^aL^b	[S]
X_4	$(\bar{6}, 3, -1/3)$	-2/3	0	XQ^aQ^b	[S]
X_5	$(\bar{6}, 1, -1/3)$	-2/3	0	XQ^aQ^b, Xu^ad^b	$[A,\!-]$
X_6	(3, 1, 2/3)	-2/3	0	Xd^ad^b	[A]
X_7	$(\bar{6}, 1, 2/3)$	-2/3	0	Xd^ad^b	[S]
X_8	$(\bar{6}, 1, -4/3)$	-2/3	0	Xu^au^b	[S]
X_9	(3, 2, 7/6)	1/3	-1	$X\bar{Q}^a e^b, XL^a \bar{u}^b$	[-,-]

[?: $a \longleftrightarrow b \text{ symmetry}$]

A Sample Model

$$\mathcal{L}_{10} \supset -g_1^{ab} X_1(e^a e^b) - g_7^{ab} X_7^{\alpha\beta} (d_{\alpha}^a d_{\beta}^b) - g_8^{ab} X_8^{\alpha\beta} (u_{\alpha}^a u_{\beta}^b)$$
$$-\lambda_{10} X_7^{\alpha\alpha'} X_8^{\beta\beta'} X_8^{\gamma\gamma'} X_1 \epsilon_{\alpha\beta\gamma} \epsilon_{\alpha'\beta'\gamma'} + \text{H.c.}$$

Each term has mass dimension ≤ 4

But can generate a mass-dimension 12 operator at low energies to realize $e^-p \rightarrow e^+\overline{p}$

There are several possible models.

Patterns of $|\Delta B|=2$ Violation?

Note possible SM gauge invariant scalar models

[H.c. implied.]

[SG & Xinshuai Yan, arXiv: 1808.05288]

	Model		Model		Model		
Section 25	M1	$X_5X_5X_7$	A	$X_1X_8X_7^{\dagger}$	M10	$X_7X_8X_8X_1$	
	M2	$X_4X_4X_7$	В	$X_3X_4X_7^{\dagger}$	M11	$X_5X_5X_4X_3$	
	M3	$X_7X_7X_8$	С	$X_3X_8X_4^{\dagger}$	M12	$X_5X_5X_8X_1$	
	M4	$X_6X_6X_8$	D	$X_5X_2X_7^{\dagger}$	M13	$X_4X_4X_5X_2$	
	M5	$X_5X_5X_5X_2$	\mathbf{E}	$X_8X_2X_5^{\dagger}$	M14	$X_4X_4X_5X_3$	"4 X" models
	M6	$X_4X_4X_4X_2$	F	$X_2X_2X_1^{\dagger}$	M15	$X_4X_4X_8X_1$	can yield
	M7	$X_4X_4X_4X_3$	G	$X_3X_3X_1^{\dagger}$	M16	$X_4X_7X_8X_3$	•
	M8	$X_7X_7X_7X_1^{\dagger}$			M17	$X_5X_7X_7X_2^{\dagger}$	$e^{-}p \rightarrow e^{+}\overline{p}$
	M9	$X_6X_6X_6X_1^{\dagger}$			M18	$X_4X_7X_7X_3^{\dagger}$	
							e⁻p →v n

 $n-\overline{n}$ $\pi^-\pi^- \rightarrow e^-e^-$

[Models with $|\Delta L|=2$ always involve 3 different scalars.]

Patterns of IDBI=2 Violation? Note possible BNV processes

[SG & Xinshuai Yan, arXiv: 1808.05288]

TABLE III. Suite of $|\Delta B| = 2$ and $|\Delta L| = 2$ processes generated by the models of Table II, focusing on states with first-generation matter. The (*) superscript indicates that a weak isospin triplet of $|\Delta L| = 2$ processes can appear, namely $\pi^0 \pi^0 \to \nu \nu$ and $\pi^- \pi^0 \to e^- \nu$. Models M7, M11, M14, and M16 also support $\nu n \to \bar{n}\bar{\nu}$, revealing that cosmic ray neutrinos could potentially mediate a $|\Delta B| = 2$ effect.

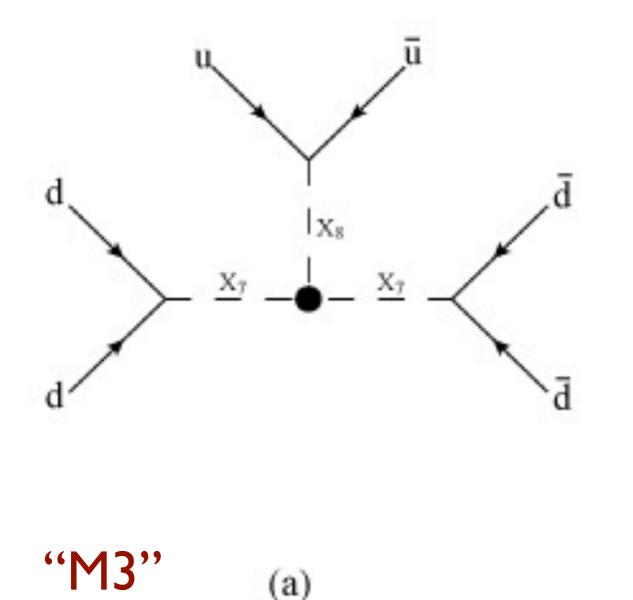
$oxed{nar{n}}$	$\pi^-\pi^- \to e^-e^-$	$e^-p \to \bar{\nu}_{\mu,\tau}\bar{n}$	$e^-p \to \bar{\nu}_e \bar{n}/e^+ \bar{p}$	$e^-p \to e^+\bar{p}$
M1	A	M5	M7	M10
M2	$\mathrm{B}^{(*)}$	M6	M11	M12
M3	$C_{(*)}$	M13	M14	M15
			M16	

Use observations of $n\bar{n}$ oscillation or $N\bar{N}$ conversion (e⁻ p \rightarrow e⁺ \bar{p} , ...) to establish new scalars...

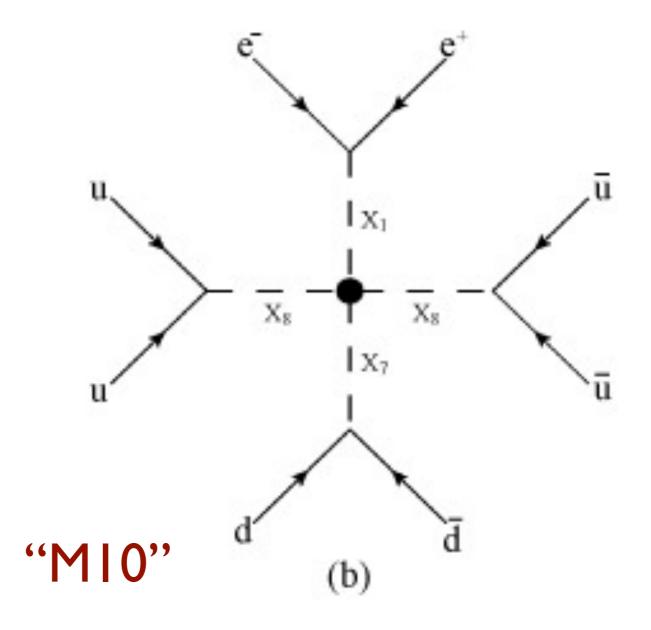
& w/ both can predict the existence of $\pi^-\pi^- \rightarrow e^-e^-!$

Connecting $|\Delta B|=2$ to $|\Delta L|=2...$

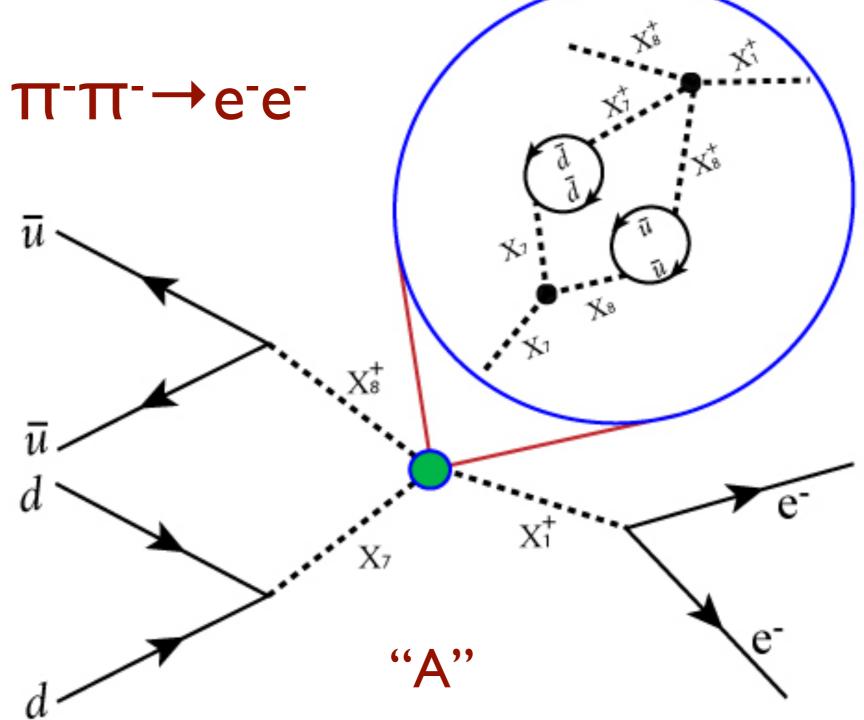
An example...



n-n "Oscillation"



Connecting $|\Delta B|=2$ to $|\Delta L|=2...$



"Everything not forbidden is compulsory" [M. Gell-Mann, after T.H. White]

Patterns of $|\Delta B|=2$ Violation

Discovery implications for Ov BB decay

Model	$n\bar{n}?$	$e^-n \to e^-\bar{n}$?	$e^- p \to \bar{\nu}_X \bar{n}$?	$e^-p \to e^+\bar{p}$	$2 0 \nu \beta \beta$?
M3	Y	N	N	Y	Y[A]
M2	Y	Y	Y	Y	Y [B]
M1	Y	Y	Y	N	? [D]
	N	N	Y	Y	? [C?]

Patterns of observation can distinguish the possibilities.

Note high-intensity, low-energy e-scattering facilities (P2, e.g.) can be used to broader purpose

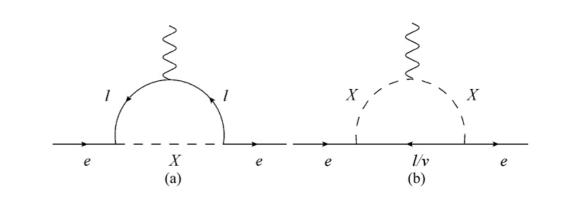
Phenomenology of New Scalars

Constraints from many sources — Focus on first generation

- i) N-N (But this does not impact M7)
- ii) Collider constraints
- CMS: I+I+ search; cannot look at invariant masses
- below 8 GeV ATLAS: dijet studies "weaker"...
- iii) P.V. Møller scattering Few GeV mass window possible $M_{X1,3}/g_{1,3}^{11} < 2.7$ TeV @ 90%CL [E158] (if "heavy")
- iv) (g-2)_e (superseded by Møller, save for light masses) Note light mass solution to Δa_e puzzle!
- v) Nuclear stability

SuperK: pp→e+e+

vi) HH annihilation Beware galactic magnetic fields!



[S.G. & Xinshuai Yan, 1907.12571]

Low-Energy Electron Facilities

Note illustrative parameter choices

[Hydrogen]

		Energy
	CBETA [14]	15
*	MESA [15]	10

Facility	Be	am	Γ	Luminosity	
Tacilly	Energy(MeV)	Current (mA)	Length (cm)	Density (g/cm ³)	$ \left \text{ (cm}^{-2} \right) $
CBETA [14]	150	40	60	0.55×10^{-6}	2.48×10^{36}
MESA [15]	100	10	60	0.55×10^{-6}	6.21×10^{35}
ARIEL [16]	50	10	100	0.09×10^{-3}	1.69×10^{38}
		10	* 0.2	71.3×10^{-3}	2.68×10^{38}
FAST [17]	150	28.8	100	0.09×10^{-3}	4.88×10^{38}
	100	20.0	* 0.1	71.3×10^{-3}	3.87×10^{38}

*Liquid

 \Rightarrow = ERL (e.g.)

= Linac (external target)

Use E=40 MeV for estimates.

= Linac, ILC test accelerator

Event Rates

Select particular scalar masses/couplings for reference $\lambda_i = I$ $M_{Xi}/g_i^{1/2} = 30$ GeV for i = 1, 2, 3 else IGeV

Rates in #/yr

 $e^- p \rightarrow e^+ p$:

Facility	M7	M10	M11	M12	M14	M15	M16
CBETA [18]	1.12	0.18	0.01	0.00	0	2.24	0.45
MESA [19]	0.28	0.05	0.00	0.00	0	0.56	0.11
ARIEL [20]	76.41	12.59	0.41	0.20	0	152.69	30.68
	121.06	19.95	0.65	0.31	0	241.93	48.62
FAST [21]	220.05	36.27	1.18	0.56	0	439.75	88.37
	174.33	28.73	0.93	0.45	0	348.38	70.00

 $e^- p \rightarrow v_e \overline{n}$

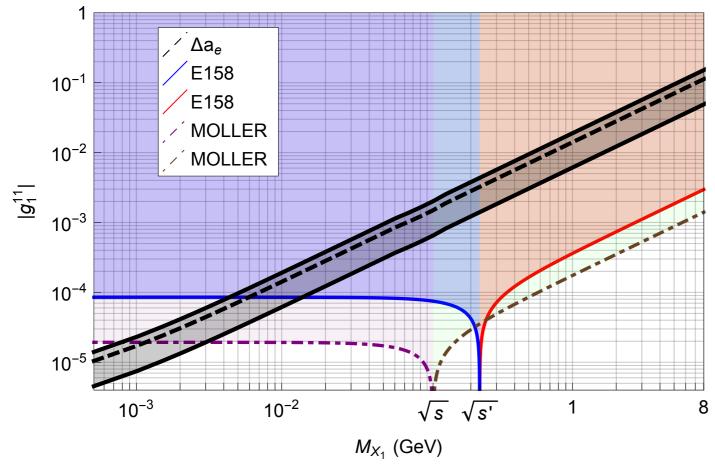
	Facility	M5	M6	M7	M11	M13	M14	M16
	CBETA [18]	0.00	0	0.08	0.00	0.14	0	0.02
	MESA [19]	0.00	0	0.02	0.00	0.03	0	0.01
	ARIEL [20]	0.03	0	5.17	0.24	9.45	0	1.59
		0.04	0	8.19	0.38	14.97	0	2.51
	FAST [21]	0.08	0	14.88	0.70	$2\overline{7.20}$	0	4.57
		0.06	0	11.79	0.55	21.55	0	3.62

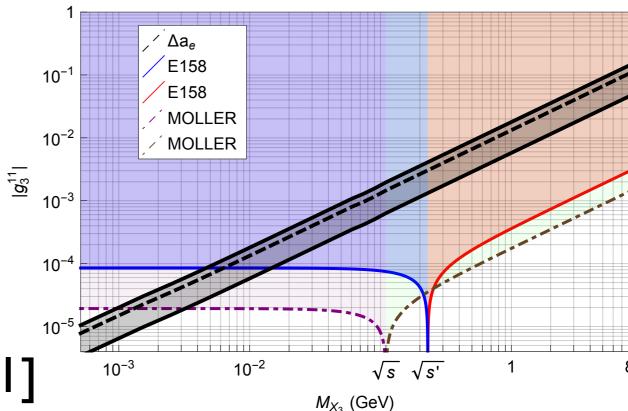
Summary

- The discovery of B-L violation would reveal the existence of dynamics beyond the Standard Model
- We have used minimal scalar models to relate IΔBI=2 to ΔLI=2 processes [i.e., via the "short range" mechanism of 0vββ decay]
- We have noted nucleon-antinucleon conversion processes, i.e., scattering-mediated nucleon-antinucleon processes, in addition to neutron-antineutron oscillations, to establish an effective Majorana v
- Such a connection does not establish the observed scale of the neutrino mass, nor the mechanism of 0vββ decay; thus direct empirical studies continue to be essential
- Experiments with intense low-energy electron beams, e.g., complement essential neutron studies to help solve the v mass puzzle

Backup Slides

Limits on L-carrying Scalars





[S.G. & Xinshuai Yan, 1907.12571]

Fundamental Majorana Dynamics

Can exist for electrically neutral massive fermions: either leptons (v's) or combinations of quarks (n's)

Lorentz invariance allows

$$\mathcal{L} = \bar{\psi}i\partial\psi - \frac{1}{2}m(\psi^T C\psi + \bar{\psi}C\bar{\psi}^T)$$

[Majorana, 1937]

where m is the Majorana mass.

N.B. a "Majorana neutron" is an entangled n and \overline{n} state

Bibliography:

- S.G. & Xinshuai Yan (U. Kentucky), Phys. Rev. D93, 096008 (2016) [arXiv:1602.00693];
- S.G. & Xinshuai Yan, Phys. Rev. D97, 056008 (2018) [arXiv:1710.09292];
- S.G. & Xinshuai Yan, Phys. Lett. B790 (2019) 421 [arXiv:1808.05288]; and on ongoing work in collaboration with Xinshuai Yan

Nucleon-Antinucleon Transitions Can be realized in different ways

Enter searches for

neutron-antineutron oscillations (free n's & in nuclei)

"spontaneous"
& thus sensitive to
environment

$$\mathcal{M} = \begin{pmatrix} M_n - \mu_n B & \delta \\ \delta & M_n + \mu_n B \end{pmatrix}$$

$$P_{n\to\bar{n}}(t) \simeq \frac{\delta^2}{2(\mu_n B)^2} \left[1 - \cos(2\mu_n B t) \right]$$

- dinucleon decay (in nuclei)
 (limited by finite nuclear density)
- nucleon-antinucleon conversion (NEW!)
 (mediated by external interactions) [SG & Xinshuai Yan]

Effective Lagrangian

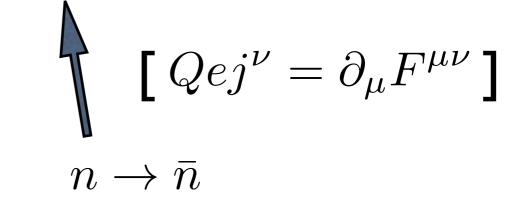
Neutron interactions with B-L violation & electromagnetism

$$\mathcal{L}_{\text{eff}} \supset -\frac{1}{2} \mu_n \bar{n} \sigma^{\mu\nu} n F_{\mu\nu} - \frac{\delta}{2} n^T C n - \frac{\eta}{2} n^T C \gamma^{\mu} \gamma^5 n j_{\mu} + \text{h.c.}$$

magnetic moment

 $n \to \bar{n}$

"spontaneous" ----- oscillation



conversion

[SG & Xinshuai Yan, arXiv: 1710.09292]

Since the quarks carry electric charge, a BSM model that generates neutron-antineutron oscillations can also generate conversion

Neutron-Antineutron Conversion

Different mechanisms are possible

★ n-n conversion and oscillation could share
the same "TeV" scale BSM sources

Then the quark-level conversion operators can be derived noting the quarks carry electric charge

n-n conversion and oscillation could come from different BSM sources

Indeed different $|\Delta B|=2$ processes could appear (e.g., $e^-p \rightarrow e^+ \overline{p}$)

NN conversion

Neutron-Antineutron Oscillation Quark-level operators

[Rao & Shrock, 1982]

$$(\mathcal{O}_1)_{\chi_1\chi_2\chi_3} = [u_{\chi_1}^{T\alpha}Cu_{\chi_1}^{\beta}][d_{\chi_2}^{T\gamma}Cd_{\chi_2}^{\delta}][d_{\chi_3}^{T\rho}Cd_{\chi_3}^{\sigma}](T_s)_{\alpha\beta\gamma\delta\rho\sigma},$$

$$(\mathcal{O}_{2})_{\chi_{1}\chi_{2}\chi_{3}} = [u_{\chi_{1}}^{T\alpha}Cd_{\chi_{1}}^{\beta}][u_{\chi_{2}}^{T\gamma}Cd_{\chi_{2}}^{\delta}][d_{\chi_{3}}^{T\rho}Cd_{\chi_{3}}^{\sigma}](T_{s})_{\alpha\beta\gamma\delta\rho\sigma},$$

$$(T_s)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\rho\alpha\gamma}\epsilon_{\sigma\beta\delta} + \epsilon_{\sigma\alpha\gamma}\epsilon_{\rho\beta\delta} + \epsilon_{\rho\beta\gamma}\epsilon_{\sigma\alpha\delta} + \epsilon_{\sigma\beta\gamma}\epsilon_{\rho\alpha\delta},$$

$$(T_a)_{lphaeta\gamma\delta
ho\sigma} = \epsilon_{
holphaeta}\epsilon_{\sigma\gamma\delta} + \epsilon_{\sigmalphaeta}\epsilon_{
ho\gamma\delta}$$

Note

$$O_2 \rightarrow O_3$$

$$T_s \rightarrow T_a$$

Only 14 of 24 operators are independent

$$(\mathcal{O}_1)_{\chi_1 LR} = (\mathcal{O}_1)_{\chi_1 RL}, \qquad (\mathcal{O}_{2,3})_{LR\chi_3} = (\mathcal{O}_{2,3})_{RL\chi_3},$$

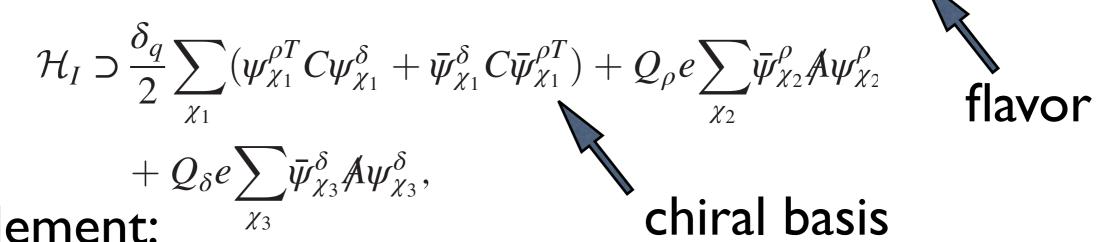
$$(\mathcal{O}_2)_{mmn} - (\mathcal{O}_1)_{mmn} = 3(\mathcal{O}_3)_{mmn}$$

 $(\mathcal{O}_2)_{mmn} - (\mathcal{O}_1)_{mmn} = 3(\mathcal{O}_3)_{mmn}$ [Caswell, Milutinovic, & Senjanovic, 1983]

Only 4 appear in SM effective theory

From Oscillation to Conversion

Quark-level operators: compute $q^{\rho}(p)+\gamma(k)\rightarrow \overline{q}^{\delta}(p')$



matrix element:

$$\langle \bar{q}^{\delta}(p')|\mathcal{T}\left(\sum_{\chi_1,\chi_2}\left(-i\frac{\delta_q}{2}\int d^4x\psi_{\chi_1}^{\rho T}C\psi_{\chi_1}^{\delta}\right)\right)$$

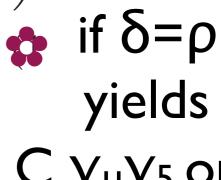
$$\times \left(-iQ_{\rho}e\int d^{4}y\bar{\psi}_{\chi_{2}}^{\rho}A\psi_{\chi_{2}}^{\rho}-iQ_{\delta}e\int d^{4}y\bar{\psi}_{\chi_{2}}^{\delta}A\psi_{\chi_{2}}^{\delta}\right)\right)$$

$$\times |q^{\rho}(p)\gamma(k)\rangle,$$

Effective vertex

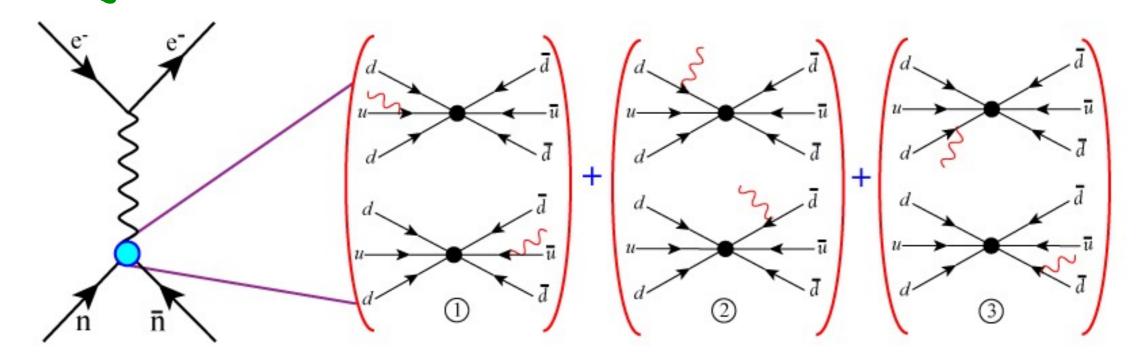
$$\times |q^{\rho}(p)\gamma(k)\rangle,$$
evertex
$$-\frac{m\delta_{q}e}{p^{2}-m^{2}}(Q_{\rho}\psi_{-\chi_{2}}^{\delta T}C\gamma^{\mu}\psi_{\chi_{2}}^{\rho}-Q_{\delta}\psi_{\chi_{2}}^{\delta T}C\gamma^{\mu}\psi_{-\chi_{2}}^{\rho}),$$

$$24$$
if $\delta=\rho$
yields
$$C \gamma_{\mu}\gamma_{5} \text{ only}$$



B-L Violation via e-n scattering

Linking neutron-antineutron oscillation to conversion



e.g.:

$$(\mathcal{O}_{2})_{\chi_{1}\chi_{2}\chi_{3}} = [u_{\chi_{1}}^{T\alpha}Cd_{\chi_{1}}^{\beta}][u_{\chi_{2}}^{T\gamma}Cd_{\chi_{2}}^{\delta}][d_{\chi_{3}}^{T\rho}Cd_{\chi_{3}}^{\sigma}](T_{s})_{\alpha\beta\gamma\delta\rho\sigma}$$
[Rao & Shrock, 1983]

{Ra

$$\begin{split} & \bigvee \\ (\tilde{\mathcal{O}}_{2})_{\chi_{1}\chi_{2}\chi_{3}}^{\chi\,\mu} = \Big[[u_{-\chi}^{\alpha\,T}C\gamma^{\mu}\gamma_{5}d_{\chi}^{\beta} - 2u_{\chi}^{\alpha\,T}C\gamma^{\mu}\gamma_{5}d_{-\chi}^{\beta}] [u_{\chi_{2}}^{\gamma\,T}Cd_{\chi_{2}}^{\delta}] [d_{\chi_{3}}^{\rho\,T}Cd_{\chi_{3}}^{\sigma}] \\ & + [u_{\chi_{1}}^{\alpha\,T}Cd_{\chi_{1}}^{\beta}] [u_{-\chi}^{\gamma\,T}C\gamma^{\mu}\gamma_{5}d_{\chi}^{\delta} - 2u_{\chi}^{\gamma\,T}C\gamma^{\mu}\gamma_{5}d_{-\chi}^{\delta}] [d_{\chi_{3}}^{\rho\,T}Cd_{\chi_{3}}^{\sigma}] \\ & + [u_{\chi_{1}}^{\alpha\,T}Cd_{\chi_{1}}^{\beta}] [u_{\chi_{2}}^{\gamma\,T}Cd_{\chi_{2}}^{\delta}] [d_{-\chi}^{\rho\,T}C\gamma^{\mu}\gamma_{5}d_{\chi}^{\sigma} + d_{\chi}^{\rho\,T}C\gamma^{\mu}\gamma_{5}d_{-\chi}^{\sigma}] \Big] \mathbf{T}_{\mathbf{s}...} \end{split}$$

B-L Violation via e-n scattering

Linking neutron-antineutron oscillation to conversion Moreover...

$$\begin{split} (\tilde{\mathcal{O}}_{1})_{\chi_{1}\chi_{2}\chi_{3}}^{\chi\,\mu} = & \left[-2[u_{-\chi}^{\alpha\,T}C\gamma^{\mu}\gamma_{5}u_{\chi}^{\beta} + u_{\chi}^{\alpha\,T}C\gamma^{\mu}\gamma_{5}u_{-\chi}^{\beta}][d_{\chi_{2}}^{\gamma\,T}Cd_{\chi_{2}}^{\delta}][d_{\chi_{3}}^{\rho\,T}Cd_{\chi_{3}}^{\sigma}] \right. \\ & + & \left. [u_{\chi_{1}}^{\alpha\,T}Cu_{\chi_{1}}^{\beta}][d_{-\chi}^{\gamma\,T}C\gamma^{\mu}\gamma_{5}d_{\chi}^{\delta} + d_{\chi}^{\gamma\,T}C\gamma^{\mu}\gamma_{5}d_{-\chi}^{\delta}][d_{\chi_{3}}^{\rho\,T}Cd_{\chi_{3}}^{\sigma}] \right. \\ & + & \left. [u_{\chi_{1}}^{\alpha\,T}Cu_{\chi_{1}}^{\beta}][d_{\chi_{2}}^{\gamma\,T}Cd_{\chi_{2}}^{\delta}][d_{-\chi}^{\rho\,T}C\gamma^{\mu}\gamma_{5}d_{\chi}^{\sigma} + d_{\chi}^{\rho\,T}C\gamma^{\mu}\gamma_{5}d_{-\chi}^{\sigma}]\right](T_{s})_{\alpha\beta\gamma\delta\rho\sigma} \end{split}$$

yielding [Here $\chi=R-\chi=L$ for em scattering]

$$(\tilde{\mathcal{O}}_1)_{\chi_1\chi_2\chi_3}^{\chi} = (\delta_1)_{\chi_1\chi_2\chi_3} \frac{em}{3(p_{\text{eff}}^2 - m^2)} \frac{Qej_{\mu}}{q^2} (\tilde{\mathcal{O}}_1)_{\chi_1\chi_2\chi_3}^{\chi\mu} ,$$

(best connection to oscillation as $q^2 \rightarrow 0$)

with similar relationships for i=2,3 [only these in em case]

The hadronic matrix elements are computed in the MIT bag model.

B-L Violation via e-n scattering

Linking neutron-antineutron oscillation to conversion

[SG & Xinshuai Yan, arXiv:1710.09292, PRD 2018]

TABLE I. Dimensionless matrix elements $(I_i)_{\chi_1\chi_2\chi_3}^{\chi_3}$ of $n-\bar{n}$ conversion operators. The column "EM" denotes the matrix-element combination of $(\chi=R)-(\chi=L)$.

	I_1				I_2					I_3	
$\chi_1\chi_2\chi_3$	$\chi = R$	$\chi = L$	EM	$\chi_1\chi_2\chi_3$	$\chi = R$	$\chi = L$	EM	$\chi_1\chi_2\chi_3$	$\chi = R$	$\chi = L$	EM
RRR	19.8	19.8	0	RRR	-4.95	-4.95	0	RRR	1.80	-8.28	10.1
RRL	17.3	17.3	0	RRL	-2.00	-9.02	7.02	RRL	-1.07	-8.81	7.74
RLR	17.3	17.3	0	RLR	-4.09	-0.586	-3.50	RLR	7.20	6.03	1.17
RLL	6.02	6.02	0	RLL	-0.586	- 4.09	3.50	RLL	6.03	7.20	-1.17
LRR	6.02	6.02	0	LRR	- 4.09	-0.586	-3.50	LRR	7.20	6.03	1.17
LRL	17.3	17.3	0	LRL	-0.586	- 4.09	3.50	LRL	6.03	7.20	-1.17
LLR	17.3	17.3	0	LLR	-9.02	-2.00	-7.02	LLR	-8.81	-1.07	-7.74
$_$ LLL	19.8	19.8	0	LLL	-4.95	-4.95	0	LLL	-8.28	1.80	-10.1

Electromagnetic scattering yields $n-\overline{n}$ conversion from O_2 and O_3 operators only! Interactions impact view on $n-\overline{n}$ osc. even in $q^2 \rightarrow 0$ limit; (cf. K_S regeneration in matter); cf. Nesvizhevsky et al 2018....

B-L Violation via e-d scattering

What sorts of limits could be set?

Matching relation:

$$\eta \bar{v}(\mathbf{p}', s') C \mathbf{j} \gamma_5 u(\mathbf{p}, s) = \frac{em}{3(p_{\text{eff}}^2 - m^2)} \frac{ej_{\mu}}{q^2}$$

$$\times \langle \bar{n}_{q}(\mathbf{p'}, \mathbf{s'})| \int \mathbf{d^{3}x} \sum_{\mathbf{i}, \chi_{1}, \chi_{2}, \chi_{3}}^{\prime} [(\delta_{\mathbf{i}})_{\chi_{1}, \chi_{2}, \chi_{3}}^{\mathrm{R}\mu} [(\tilde{\mathcal{O}}_{\mathbf{i}})_{\chi_{1}, \chi_{2}, \chi_{3}}^{\mathrm{R}\mu} - (\tilde{\mathcal{O}}_{\mathbf{i}})_{\chi_{1}, \chi_{2}, \chi_{3}}^{\mathrm{L}\mu}]|\mathbf{n}_{q}(\mathbf{p}, \mathbf{s})\rangle$$

The best limits come from small-angle scattering

— using the uncertainty principle to estimate θ_{min}

Sensitivity estimate for a beam energy of 20 MeV:

$$|\tilde{\delta}| \lesssim 2 \times 10^{-15} \sqrt{\frac{N \text{ events}}{1 \text{ event}}} \sqrt{\frac{1 \text{ yr}}{t}} \sqrt{\frac{0.6 \times 10^{17} \text{ s}^{-1}}{\phi}} \sqrt{\frac{1 \text{ m}}{L}} \sqrt{\frac{5.1 \times 10^{22} \text{ cm}^{-3}}{\rho}} \text{ GeV}.$$

for the Majorana mass of the neutron