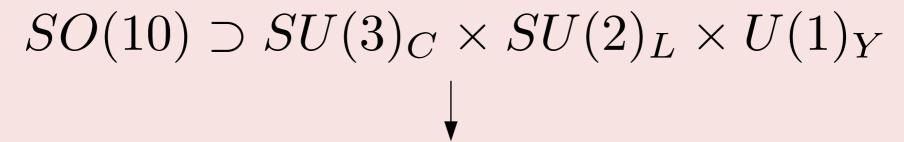
SO(10) Grand Unified Theory

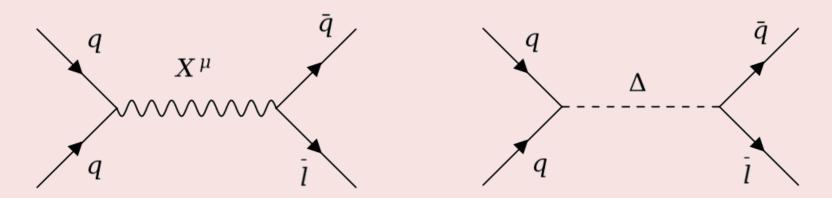
Katerina Jarkovska

Institute of Particle and Nuclear Physics, Charles University

Inherently quantum model



Proton decay



Proton decay width robust with respect to Planck effects

Numerical model analysis

Proton lifetime estimate

SO(10) Grand Unified Theory

Katerina Jarkovska*, M. Malinsky, T. Mede, V. Susic

* Institute of Particle and Nuclear Physics, Charles University jarkovska@ipnp.troja.mff.cuni.cz

General features

• Gauge fields in 45_G

$$\begin{split} 45_G &= G^b_{\mu} \oplus A^a_{\mu} \oplus B_{\mu}, Y_{\mu} \oplus (3,1,\frac{2}{3}) \oplus (3,2,-\frac{5}{6}) \\ &\quad \oplus (3,2,\frac{1}{6}) \oplus (1,1,1) + h.c. \end{split}$$

• Matter fields in 16_F

$$16_F = L_L \oplus \overline{d}_L \oplus Q_L \oplus \overline{u}_L \oplus \overline{e}_L \oplus N_L^c$$

- Anomaly cancellation

Minimal scalar sector (SSB)

- SO(10) to Intermediate symmetry: 45c
- · Preserves rank
- Two real SM singlets

$$\langle (1,1,1,0) \rangle \sim \omega_{BL}, \ \langle (1,1,3,0) \rangle \sim \omega_{R}$$

(3,2,2,1_{RL} notation)

• Intermediate symmetry to SM: 126s

- · Renormalizable Yukawa interaction
- One complex SM singlet $\langle (1, 1, 3, 2) \rangle \sim \sigma$
- Seesaw scale $|\sigma| \ll \max(\omega_{BL}, \omega_R)$
- SM to SU(3)_cxU(1)₀: 10_s

Tree level scalar spectrum

Contains tachyonic scalars

$$\mathcal{M}_{S}^{2}[(8,1,0)] = 2a_{2}(\omega_{BL} - \omega_{R})(\omega_{R} + 2\omega_{BL}),$$

$$M_S^2[(1, 3, 0)] = 2a_2(\omega_R - \omega_{BL})(2\omega_R + \omega_{BL}),$$

$$\begin{split} M^2[(1,1,0)] &= \mathbf{a_2} \left(-\frac{45\omega_{BL}^4}{3\omega_{BL}^2 + 2\omega_R^2} + 13\omega_{BL}^2 - 2\omega_{BL}\omega_R - 2\omega_R^2 \right) + O\left(a_2^2, \frac{\sigma^2}{\sigma^2}\right) \end{split}$$

if not near the flipped SU(5)xU(1)

- breaking chain. • Pseudo-Goldstone bosons correspond to
- global O(45) symmetry broken by $\frac{\sigma}{\omega}$ and
- If |a2| is small, loop corrections are dominant and model is consistent only

One-loop remedy

Effective potential approach

To consistently calculate corrections to the scalar masses one can invoke the Effective potential can be also used to effective potential V_{eff} . At one-loop level, $V_{eff} = V_0 + V_1$ where

$$V_1 = \frac{1}{64\pi^2} \text{Tr} \left[M_S^4(\Phi) \left(\log \frac{M_S^2(\Phi)}{\mu_R^2} - \frac{3}{2} \right) \right] + \frac{3}{64\pi^2} \text{Tr} \left[M_G^4(\Phi) \left(\log \frac{M_G^2(\Phi)}{\mu_R^2} - \frac{5}{6} \right) \right]$$

in the MS renormalization scheme with vanishing external momenta. One-loop then effective mass is calculated as

$$\mathcal{M}^2 = \left. \frac{\partial^2 V_0}{\partial \Phi \partial \Phi^*} \right|_v + \left. \frac{\partial^2 V_1}{\partial \Phi \partial \Phi^*} \right|_v$$

using vacuum $v = v_0 + v_1$ determined from modified stationarity conditions. However, the anomalous dimension Moreover, for the pseudo-Goldstone mass holds

$$\mathcal{M}^2 - \mathcal{M}_{phys}^2 = \text{IR diverging logs} + \text{two-loop effects.}$$

Beta functions

partially calculate beta functions of scalar parameters. If

$$\lambda = \frac{\partial^4 V_0(\Phi)}{\partial \Phi^4}$$

$$\beta_{\lambda} = \frac{1}{32\pi^2} \frac{\partial^4}{\partial \Phi^4} \left(\text{Tr} \left[M_S^4(\Phi) \right] + \right. \\ \left. + 3 \text{Tr} \left[M_G^4(\Phi) \right] \right).$$

part of the beta function cannot be recovered using this method.

Proton decay analysis

Proton decay is mediated by heavy gauge bosons $X^{\mu} = (\overline{3}, 2, \frac{5}{6}), (\overline{3}, 2, -\frac{1}{6}), \dots$

and scalars

$$\Delta = (\overline{3}, 1, \frac{1}{3}), (\overline{3}, 1, \frac{4}{3}), \dots$$

Planck scale effects

 Non-renormalizable operator influencing GUT $-\frac{c}{M_{Pl}}\frac{1}{2}\text{Tr}(F^{\mu\nu}\Phi F_{\mu\nu})$

is absent if $\Phi = 45_s$.

 Non-renormalizable operator effecting flavour $\sum_{f;i,j} \frac{\kappa_{i,j}^f}{M_{Pl}} f_i f_j HS + h.c.$

$$\sum_{f,i,j} \frac{\kappa_{i,j}^*}{M_{Pl}} f_i f_j HS + h.c.$$

doesn't have any significant influence on total proton decay width in SO(10). [Kolesova, Malinsky: 2016]

