

Generalised CP Symmetry in Modular-Invariant Models of Flavour

in collaboration with J. T. Penedo, S. T. Petcov and A. V. Titov [arXiv: 1905.11970]

Pavel Novichkov (SISSA & INFN, Trieste)

BLV2019, IFT, Madrid October 22, 2019

Modular invariance for flavour

Why modular invariance?

- Naturally leads to a discrete flavour symmetry
- Discrete flavour symmetry can explain 2 large + 1 small lepton mixing angles
- More predictive than conventional discrete symmetry approach: avoids multiple new scalar fields, baroque potentials and shaping symmetries

Modular transformations

Modular invariance for flavour

Transformation of fields $\phi'_{i} = \left[(c\tau + d)^{-k} \right] \rho$ $\left[\begin{pmatrix} a & b \ c & d \end{pmatrix}\right]_{ij}$ ϕ_i weight ("charge") unitary representation of Γ_N Γ_N is a quotient of Γ N 2 3 4 5 Γ_N S_3 A_4 S_4 A_5 discrete symmetry group Modular-invariant interactions **Y**(τ)) $(φ_1 φ_2 ... φ_n)$ $(c\tau + d)^k \rho$ $\left(\kappa \rho\right) \left[(\epsilon \tau + d)^{-(k_1 + k_2 + ... + k_n)} \rho_1 \otimes \rho_2 \otimes ... \otimes \rho_n \right] \quad \times \text{itself}$ modular form of weight k and level N $k = k_1 + k_2 + ... + k_n$ ρ **⊗** ρ¹ **⊗** ρ² **⊗** . . . **⊗** ρⁿ **⊃ 1** N k 0 2 4 6 $2(S_3)$ 1 2 3 4 $3(A_4)$ 1 3 5 7 $4(S_4)$ 1 5 9 13 $5 (A_5)$ 1 11 21 31

CP + modular invariance

Why combine modular invariance with CP invariance?

- Observed CP violation is related to the flavour structure (3 generations)
- CP symmetry arises together with modular symmetry in models with extra dimensions
- Further increase of predictive power

Consistency condition CP **[−]**¹ **◦ ◦** CP **=** yields:

- $\cdot \tau \stackrel{CP}{\longrightarrow} -\tau^*$ (without loss of generality)
- \cdot $\phi_i(t, \vec{x}) \stackrel{CP}{\longrightarrow} \phi_i^{\dagger}(t, -\vec{x})$ (in some basis of Γ_N)
- **•** $Y_i(\tau) \xrightarrow{CP} Y_i(-\tau^*) = Y_i(\tau)^*$
- CP invariance **⇔**g **=** g [∗] (less parameters)
- CP is conserved if τ **∈** ∂D , or Imτ **=** 0
- Otherwise, both CP and flavour symmetry are broken by the VEV of τ

$$
L \sim (\mathbf{3}, 2), \qquad E^c \sim (\mathbf{1}', 0) \oplus (\mathbf{1}, 2) \oplus (\mathbf{1}', 2), \qquad N^c \sim (\mathbf{3}, 0)
$$

$$
W = \alpha \left(E_1^c L Y_{3'}^{(2)} \right)_1 H_d + \beta \left(E_2^c L Y_{3}^{(4)} \right)_1 H_d + \gamma \left(E_3^c L Y_{3'}^{(4)} \right)_1 H_d
$$

+
$$
\left(\frac{\beta}{2} \left(N^c L Y_{2}^{(2)} \right)_1 H_u + \left(\frac{\beta'}{2} \left(N^c L Y_{3'}^{(2)} \right)_1 H_u + \Lambda \left(N^c N^c \right)_1 \right) \right)
$$

• CP invariance condition: $\left(\text{Im}\left(\frac{g'}{g}\right)\right) = 0$

- \cdot 7 parameters to fit 8 observables, $N\sigma = 1.012$
- Predictions at a few percent level:

$$
m_1 = 0.012 \text{ eV}, \quad m_2 = 0.015 \text{ eV}, \quad m_3 = 0.051 \text{ eV},
$$

$$
\Sigma m = 0.078 \text{ eV}, \quad |\langle m \rangle| = 0.012 \text{ eV},
$$

$$
\delta/\pi = \pm 1.64, \quad \alpha_{21}/\pi = \pm 0.35, \quad \alpha_{31}/\pi = \pm 1.25
$$

• τ **≈** 0.099 **+** 1.016 breaks both CP and flavour symmetry

Example: CP-invariant S_4 model

Correlations

CP-conserving values of τ

Summary

- Modular symmetry can be combined with CP in a unique way
- \cdot τ is the only source of CPV and flavour symmetry breaking
- Modular + CP allows to construct predictive models of flavour

Summary

- Modular symmetry can be combined with CP in a unique way
- \cdot τ is the only source of CPV and flavour symmetry breaking
- Modular + CP allows to construct predictive models of flavour

Thank you!