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Content

I Consider non standard neutrino interactions (NSIs)
generated at heavy scales

I flavour structure of NSIs generates lepton flavour
violation (LFV)
I at tree-level
I but also at loop-level← this talk

I Use Standard Model Effective Theory (SMEFT) to
study this model independently

I Lepton number violating d = 5 operators also
generate LFV
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Non-Standard Interactions of Neutrinos

I Production and detection← charged current
interactions

I Propagation in matter← neutral current interactions
I Non-Standard Neutrino Interactions (NSIs)

I Modify Propagation of Neutrinos in matter
I This talk: consider NSIs for q2

� M2
W

L ⊃ −2
√

GFε
ρσ

f ,(L)(νργανσ)(fγα(PL )f)

I Neutrino experiments percent level sensitivity
I Wider class of NSIs studied
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Generating NSIs
I Generate NSI either via

a) (not so) heavy mediators above MW

b) via new light degrees of freedom
I a) can be studied model independently using

effective field theories
I This talk: use SMEFT operators up to d(O) = 8:

L = λ/2(H†H)2
−M2(H†H) + · · ·+

∑
Oρσ

Cρσ
O

Λd(O)−4
Oρσ

I b) have to be studied for each new light degree of
freedom. Perturbative calculations could be done for
wide classes of models, see e.g. [1903.05116] for the
calculation of the Z-Penguin in renormalisable
theories.
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SMEFT up to d(O) = 6
I Fields: q ∈

{(
uL

dL

)
,

(
νL

eL

)}
and f ∈ {uR ,dR ,eR}.

Oρσ

M2,f = (¯̀
ργα`σ)(f̄γαf)

Oρσ
M2,q = (¯̀

ργα`σ)(q̄γαq), Oρσ

LQM2,q = (¯̀
ργαq)(q̄γα`σ)

I NSI, LFV & charged currents for q2
� M2

W :

Oρσ

M2,f →(ēργαeL ,σ + ν̄ργανσ)(f̄γαfR)

Oρσ
M2,q →(ēργαeL ,σ + ν̄ργανσ)(ūγαuL + d̄γαdL )

Oρσ

LQM2,q →(ēργαeL ,σ)(d̄γαdL ) + (ν̄ργανσ)(ūγαuL )+

(ν̄ργαeL ,σ)(d̄γαuL ) + (ν̄ργαeσ)(ūγαdL )

I tree level & d(O) = 6): NSI and LFV correlated
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Generate flavour changing NSI from SMEFT

When considering SMEFT only up to dimension d = 6
I LFV and NSI correlated at tree-level
I singlet case: basically no observable effects for NSI
I letpon doublet case: tree-LFV cancel in

Oρσ

LQM2,` −Oρσ
M2,`

For New Physics not much heavier than MW

I we can also have cancellations between d=6 and d=8
operators
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SMEFT up to d(O) = 8 & singlet case

Oρσ

NSI,f = (¯̀
ρεH∗)γα(Hε`σ)(f̄γαf), Oρσ

H2,f = (¯̀
ρHγαH†`σ)(f̄γαf)

I NSI & LFV for H → (0, v)T :

Oρσ

M2,f → (ēργαeL ,σ + ν̄ργανσ)(f̄γαfR)

Oρσ

H2,f → v2(ēργαeL ,σ)(f̄γαfR)

Oρσ

NSI,f → −v2(ν̄ργανσ)(f̄γαfR)

I LFV→ 0 if rCH2 + CM2 = 0, where r ≡
M2

λΛ2 →
v2

Λ2
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Singlet case up to d=8

For each f ∈ {uR ,dR, eR}) and flavour ρ and σ we have
I 3 operators
I 1 constraint from tree-level LFV

Cρσff
V ,LR =

v2

Λ2

(
r Cρσ

H2 + Cρσ
M2

)
where Oµeff

V ,XY = (µ̄γµPXe)(f̄γµPY f)

I 2 remaining directions to generate NSI

ερσf =
v2

Λ2

(
r Cρσ

NSI − Cρσ
M2

)
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What about perturbative corrections?

I SMEFT generated above weak with no tree-level LFV
I Does leading log give LFV?

µd
d

dµ
~C = ΓT ~C

gives (neglecting running of g2, yt & λ):

~C(µf ) = ~C(µi)

(
1 + Γ log

µf

µi
+

1
2

ΓΓ log2 µf

µi
+ ...

)
I Leading log corrections are scheme independent
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Higgs loop contributions 9

`i
� `j

⇢

HI HJ

HM HN

f f

`i
� `j

⇢

X

M2

HM HN

f f

FIG. 4: H loops that mix and renormalise dimension eight operators, and mix them to dimension six via the Higgs
M2 insertion. The external fermion is f .

These loops are straightforward to calculate, have no subtleties in the presence of identical fermions, and give rise to
the anomalous dimensions given in the following sections.

C. Deriving RGEs

We wish to obtain the one-loop RGEs for our operator coefficients, which, for a choice of lepton flavour indices ⇢,�,
and external fermion f are assembled in a row vector

~C = (C⇢,�
NSI,f , C⇢,�

H2,f , ..., C⇢,�
M2,f ) , (III.3)

where ... is the additional coefficients that could arise if f is an SU(2) doublet. It is convenient, for the length of the
derivation, to multiply OM2 and OLQM2 by M2, so that all the operators are of dimension 8. With this modification,
the Lagrangian in 4� 2✏ dimensions can be expressed in terms of running fields and parameters as

L = ... +
1

⇤4

X

f

n
~CA[Z]AB · (Z

n/2
H Z`µ

(2+n)✏ ~OB)
o

(III.4)

where n 2 {0, 2} is the number of Higgs legs of the operator OB . The bare coefficients ~Cbare = ~C[Z]µ(2+n)✏ should
satisfy d

dµ
~Cbare = 0, which gives Renormalisation Group Equations for the CAs:

µ
@

@µ
CA = �4✏CA + 2✏( ~C · [Z])M2�A,M2 �

✓
~C · µ

@gi

@µ

@[Z]

@gi
[Z]�1

◆

A

(III.5)

= ~C · [�] (III.6)

The operator OM2 has dimension 8 � 4✏, whereas OH2 and ONSI are 8 � 6✏-dimensional, which gives different
O(✏) terms in the RGEs. These terms give the anomalous dimensions mixing OH2 and ONSI to OM2, because the
counterterms in the M2 column of [Z] are independent of � and g2, so the last term vanishes. As a result, the
off-diagonal anomalous dimensions, as usual at one loop, are twice the coefficient of 1/✏ in the counterterms. For
the diagonal anomalous dimensions, wavefunction contributions should be subtracted in the usual way (because the
counterterms for an amputated operator are represented by ~C · [C] = ~C · [Z]Z

n/2
H Z`, but we only want [Z]):

[�]AA = 2[C(1)]AA � 2Z
(1)
` � 2Z

(1)
H �1,n/2 (III.7)

[�]AB = 2[C(1)]AB , A 6= B

where Z(1) is the coefficient of 1/✏ in Z.
Neglecting the running of the couplings (g2,yt, �), the solution is

~C(µf ) = ~C(µi) ·
✓

[I] + [�] log
µf

µi
+

1

2
[��] log2 µf

µi
+ ...

◆
(III.8)

where, by analogy with running masses, the couplings in [�] are to be evaluated at µf .

In the basis (CNSI,CH2,CM2) we obtain

Γ =
λ

(4π)2

−4 2 −2r
2 −4 2r
0 0 0


ΓT (CNSI,0,0)(Λ)→ log for: CH2 & CH2, no CVLR(MW) log
[Biggio,Blennow,Fernandez,Martinez]x
ΓT (0,−CM2,CM2r)(Λ)→ log for: CH2, CH2 and CVLR(MW)
I what about other corrections and log2?
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Weak boson loops

8
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⇢

HN HM

qk
1

ql
1

`i
� `j

⇢

HN HM

qk
1

ql
1

`i
� `j

⇢

HN HM

qk
1

ql
1

`i
� `j

⇢

HN HM

qk
1

ql
1

FIG. 2: W loops that can arise when the external fermion is an SU(2) doublet. Superscripts are SU(2) indices,
subscripts are flavour indices.

The spinor contractions and momentum integral for the first two diagrams, at zero external momentum, give a
divergence

�g2

4

C

⇤4
NP

i

16⇡2✏
⇥ (3 + ⇠)(ul�

↵PLuk)(uj�↵PLui) (III.2)

whereas the last two diagrams give the cancelling term / ⇠. It remains to perform the SU(2) contractions, that define
which operator mixes to which; these can be read off the anomalous dimension matrices given in section III D.

For the case where there are identical fermions (`e as external fermions), the operator basis is smaller (see eqn
II.14), so the divergences due to W exchange among fermions look different. It is straightforward to check that the
same divergences are generated by operators that become identical in the presence of identical fermions.

`i
� `j

⇢

f
mn

f 0, k f 0, l

`n
e `j

⇢

`e, i`e, m

f 0, k f 0, l

FIG. 3: W penguin diagrams that occur when the external fermion is a doublet. The right penguin only occurs if
the operator involves identical fermions, such as two `e fields.

Finally, the W bosons can mediate penguin diagrams, as illustrated in figure 3. For operators without identical
fermions, only the left penguin can occur, and vanishes for ONSI , OH2 and OM2, due to a trace over the SU(2)
generator. For W penguins, there is only a sum over the colour of quarks in the loop, never a 2 for tracing over SU(2)
doublets, because the loop vanishes as the trace of a generator in this case. These diagrams can change the external
fermion, eg `e $ q1, thereby mixing operators with different external fermions; for simplicity, this mixing is neglected
in the RGEs of section III D. (It does not give additional constraints when the external fermion is a quark doublet;
it is interesting for external lepton doublets and is briefly rediscussed in section IV B.)

In the case of identical fermions (the external fermions are `e, and ⇢ or � is e), there could be two penguin diagrams,
due to the identical fermions. However, since we consider vector operators, which can be rearranged according to
Fierz, the spinor contractions and momentum integrals for the two possible diagrams are the same; only the SU(2)
contractions can differ. In particular, the relative sign between the amplitudes is +, because the two diagrams are
Fierz transformations of each other.

The different SU(2) contractions for the two penguin diagrams should correspond to the penguin contributions
of two operators which become identical when there are identical fermions. For instance, for external q, OM2 has
no penguin diagram, but OLQM2 generates divergences / 2OLQM2 � OM2 via the penguin. For the operators with
external `e and identical fermions, OM2 and OLQM2 are identical, so the “different” SU(2) contraction that allows
OM2 to have a penguin diagram is just the SU(2) contraction that allowed a penguin to OLQM2. We conclude that in
the reduced basis of operators with identical leptons, one must sum the penguin divergences of the different operators
that become identical.

B. The Higgs loops

Closing the Higgs legs and inserting �H4 can renormalise and mix the dimension eight operators. Inserting instead
M2 on the scalar line, as in the right diagram of figure 4, mixes the dimension eight operators into OM2 and OLQM2.
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FIG. 2: W loops that can arise when the external fermion is an SU(2) doublet. Superscripts are SU(2) indices,
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The spinor contractions and momentum integral for the first two diagrams, at zero external momentum, give a
divergence

�g2

4

C

⇤4
NP

i

16⇡2✏
⇥ (3 + ⇠)(ul�

↵PLuk)(uj�↵PLui) (III.2)

whereas the last two diagrams give the cancelling term / ⇠. It remains to perform the SU(2) contractions, that define
which operator mixes to which; these can be read off the anomalous dimension matrices given in section III D.

For the case where there are identical fermions (`e as external fermions), the operator basis is smaller (see eqn
II.14), so the divergences due to W exchange among fermions look different. It is straightforward to check that the
same divergences are generated by operators that become identical in the presence of identical fermions.
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FIG. 3: W penguin diagrams that occur when the external fermion is a doublet. The right penguin only occurs if
the operator involves identical fermions, such as two `e fields.

Finally, the W bosons can mediate penguin diagrams, as illustrated in figure 3. For operators without identical
fermions, only the left penguin can occur, and vanishes for ONSI , OH2 and OM2, due to a trace over the SU(2)
generator. For W penguins, there is only a sum over the colour of quarks in the loop, never a 2 for tracing over SU(2)
doublets, because the loop vanishes as the trace of a generator in this case. These diagrams can change the external
fermion, eg `e $ q1, thereby mixing operators with different external fermions; for simplicity, this mixing is neglected
in the RGEs of section III D. (It does not give additional constraints when the external fermion is a quark doublet;
it is interesting for external lepton doublets and is briefly rediscussed in section IV B.)

In the case of identical fermions (the external fermions are `e, and ⇢ or � is e), there could be two penguin diagrams,
due to the identical fermions. However, since we consider vector operators, which can be rearranged according to
Fierz, the spinor contractions and momentum integrals for the two possible diagrams are the same; only the SU(2)
contractions can differ. In particular, the relative sign between the amplitudes is +, because the two diagrams are
Fierz transformations of each other.

The different SU(2) contractions for the two penguin diagrams should correspond to the penguin contributions
of two operators which become identical when there are identical fermions. For instance, for external q, OM2 has
no penguin diagram, but OLQM2 generates divergences / 2OLQM2 � OM2 via the penguin. For the operators with
external `e and identical fermions, OM2 and OLQM2 are identical, so the “different” SU(2) contraction that allows
OM2 to have a penguin diagram is just the SU(2) contraction that allowed a penguin to OLQM2. We conclude that in
the reduced basis of operators with identical leptons, one must sum the penguin divergences of the different operators
that become identical.

B. The Higgs loops

Closing the Higgs legs and inserting �H4 can renormalise and mix the dimension eight operators. Inserting instead
M2 on the scalar line, as in the right diagram of figure 4, mixes the dimension eight operators into OM2 and OLQM2.

I Vertex corrections and penguin insertions

Γ =
1

(4π)2

d 0 0
0 d 0
0 0 d′

 +
λ

(4π)2

0 2 −2r
2 0 2r
0 0 0


d = −(9g2/2 + 4λ+ g

′2[1.5 − 6Yf − 4Nc,fY2
f /3])

d′ = g
′2(6Yf + 4/3NcY2

f
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Log2 contributions

The log2 term is given by ΓT ΓT )2~C/2

ΓΓ =


d2 + 4λ2 4λd 4λη − 2η(d + d′)

4λd d2 + 4λ2
−4λη+ 2η(d + d′)

0 0 d
′2


I Now ΓT ΓT

· (CNSI,0,0) gives CH2 , −rCM2

I Will constrain CNSI(Λ) at leading log:
1

(4π)4 log2
(

Λ

MW

)
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Explicit results

∆Cρσ

H2,f (mW ) = Cρσ

H2,f (Λ) ×
d

(16π2)
log

Λ

mW

+Cρσ

NSI,f (Λ) ×

(
2λ

(16π2)
log

Λ

mW
+

4λd
2(16π2)2 log2 Λ

mW
+ ...

)
∆Cρσ

M2,f (mW ) = Cρσ
M2(Λ) ×

d′ − 2λ
(16π2)

log
Λ

mW

+Cρσ

NSI,f (Λ) ×

(
−

2η
(16π2)

log
Λ

mW
+

4λη − 2η(d + d′)
2(16π2)2 log2 Λ

mW
+ ...

)

∆Cρσff
V ,LR =

Cρσ

NSI,f (Λ)v4

Λ4

2λ(d − d′) + 4λ2

2(16π2)2 log2 Λ

mW
→∼ 10−4εf

+
CM2(Λ)v2

(16π2)Λ2
[−(d − d′) − 2λ] log

Λ

mW
→∼ 2 × 10−2εf
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Sensitivity to εµe
fR

In left (right) panel Cρσ
M2 and Cρσ

NSI contribute (destructively)
to ερσ -Generically one-loop (1-l) corrections apply.

f Cµ eff
V,LR εµ e

fR (1l) εµ e
fR (2l)

e < 9.3 · 10-7 < 5 · 10-5 9 · 10-3

u < 5.4 · 10-8 < 3 · 10-6 5 · 10-4

d < 6.3 · 10-8 < 3 · 10-6 6 · 10-4
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Operators

5 independent operators involving 2 lepton, 2 quark and 2
Higgs:

Oρσ
NSI,q = (`ρεH∗)γµ(Hε`σ)(qγµq)

Oρσ
H2,q = (`ρH)γµ(H†`σ)(qγµq)

Oρσ

CCLFV ,q = (`ργµq)(qH)γµ(H†`σ)

[O†CCLFV ,q]ρσ = (`ρH)γµ(H†q)(qγµ`σ)

Oρσ

CCNSI+,q = (`ργµq)(qεH∗)γµ(Hε`σ)

+ (`ρεH∗)γµ(Hεq)(qγµ`σ)

(alternative basis [Berezhiani Rossi])
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Anomalous dimensions – doublet case I

for the basis (CNSI, CH2, (CCCLFV + C†CCLFV )/2,
(CCCNSI + C†CCNSI)/2, (CCCLFV − C†CCLFV )/2):

10

D. The anomalous dimension matrix

For singlet external fermions, in the basis (CNSI , CH2, CM2), the anomalous dimension matrix is

[�] =
g2

4

2
4
�18 0 0
0 �18 0
0 0 0

3
5 +

1



2
4
�4� 2� �2⌘
2� �4� 2⌘
0 0 0

3
5

+
g

02

4

2
4
�6 + 24Yf + 16NcY

2
f /3 0 0

0 �6 + 24Yf + 16NcY
2
f /3 0

0 0 24Yf + 16NcY
2
f /3

3
5 (III.9)

[��] =
1

2

2
4

d2 + 4�2 4�d 4�⌘ � 2⌘(d + d0)
4�d d2 + 4�2 �4�⌘ + 2⌘(d + d0)
0 0 d

02

3
5

where  = 16⇡2, ⌘ = M2/⇤2, and d = �(9g2/2 + 4� + g
02[1.5 � 6Yf � 4Nc,fY 2

f /3]) ⇠ �4 is the diagonal anomalous
dimension of ONSI and OH2, and d0 that of OM2.

For doublet external fermions, in the basis (CNSI , CH2, (CCCLFV +C†
CCLFV )/2, (CCCNSI+C†

CCNSI)/2, (CCCLFV �
C†

CCLFV )/2, CLQM2, CM2), the anomalous dimension matrix is

[�] = �3g2



2
66666664

5
2 0 0 �1 0 0 0
0 5

2 �1 0 0 0 0
2 �2 3

2 �1 0 0 0
�2 2 �1 3

2 0 0 0
0 0 0 0 5

2 0 0
0 0 0 0 0 1 �2
0 0 0 0 0 �2 1

3
77777775

+
g2Nc

3

2
66666664

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 �2 2 0 0 0 0
�2 0 0 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 �1
0 0 0 0 0 0 0

3
77777775

+
1



2
66666664

�4� 2� 0 0 0 0 �2⌘
2� �4� 0 0 0 0 2⌘
0 0 �4� 2� 0 4⌘ 0
0 0 2� �4� 0 �4⌘ 0
0 0 0 0 �2� 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

3
77777775

(III.10)

where  = 16⇡2, ⌘ = M2/⇤2, and the first matrix is from W exchange, the second is the W penguins and the last is
the Higgs.

In the case with external lepton doublets and identical fermions, several operators are identical (see eqn II.12), so
the anomalous dimension mixing operator A into operator B is the

P
B0 �AB0 over all the operators {B0} who are

identical to B. This rule applies to the second matrix of eqn(III.10). Then for the penguins, the rule is to sum also
over the identical operators in the column: �AB =

P
A0,B0 �A0B0 . Then the anomalous dimension matrix, in the basis

(CNSI , CH2, CCCNSI+, CM2), is

[�] = �3g2



2
664

5
2 0 �1 0
2 1

2 �1 0
0 0 1

2 0
0 0 0 �1

3
775 +

g2Nc

3

2
64

1 0 0 0
0 1 0 0
�5 1 4 0
0 0 0 1

3
75 +

1



2
64
�4� 2� 0 �2⌘
2� �4� 0 2⌘
�4� +4� �2� �4⌘

0 0 0 0

3
75 (III.11)

IV. RESULTS

This section presents the LFV that is induced by electroweak loop corrections to NSI operators. Section IVA sum-
marises relevant experimental constraints on LFV, then section IV B applies these constraints to the LFV coefficients
induced by loop corrections to NSI. Possible cancellations allowing to avoid these constraints are discussed in section
IV C.

(η = λr and κ = (4π)2)
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Anomalous dimensions – doublet case II
If three fermions have the same flavour:
I 3 operators become linearly dependent
I In the basis (CNSI, CH2, CCCNSI+,CM2):

10

D. The anomalous dimension matrix

For singlet external fermions, in the basis (CNSI , CH2, CM2), the anomalous dimension matrix is

[�] =
g2

4

2
4
�18 0 0
0 �18 0
0 0 0

3
5 +

1



2
4
�4� 2� �2⌘
2� �4� 2⌘
0 0 0

3
5

+
g

02

4

2
4
�6 + 24Yf + 16NcY

2
f /3 0 0

0 �6 + 24Yf + 16NcY
2
f /3 0

0 0 24Yf + 16NcY
2
f /3

3
5 (III.9)

[��] =
1

2

2
4

d2 + 4�2 4�d 4�⌘ � 2⌘(d + d0)
4�d d2 + 4�2 �4�⌘ + 2⌘(d + d0)
0 0 d

02

3
5

where  = 16⇡2, ⌘ = M2/⇤2, and d = �(9g2/2 + 4� + g
02[1.5 � 6Yf � 4Nc,fY 2

f /3]) ⇠ �4 is the diagonal anomalous
dimension of ONSI and OH2, and d0 that of OM2.

For doublet external fermions, in the basis (CNSI , CH2, (CCCLFV +C†
CCLFV )/2, (CCCNSI+C†

CCNSI)/2, (CCCLFV �
C†

CCLFV )/2, CLQM2, CM2), the anomalous dimension matrix is

[�] = �3g2



2
66666664

5
2 0 0 �1 0 0 0
0 5

2 �1 0 0 0 0
2 �2 3

2 �1 0 0 0
�2 2 �1 3

2 0 0 0
0 0 0 0 5

2 0 0
0 0 0 0 0 1 �2
0 0 0 0 0 �2 1

3
77777775

+
g2Nc

3

2
66666664

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 �2 2 0 0 0 0
�2 0 0 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 �1
0 0 0 0 0 0 0

3
77777775

+
1



2
66666664

�4� 2� 0 0 0 0 �2⌘
2� �4� 0 0 0 0 2⌘
0 0 �4� 2� 0 4⌘ 0
0 0 2� �4� 0 �4⌘ 0
0 0 0 0 �2� 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

3
77777775

(III.10)

where  = 16⇡2, ⌘ = M2/⇤2, and the first matrix is from W exchange, the second is the W penguins and the last is
the Higgs.

In the case with external lepton doublets and identical fermions, several operators are identical (see eqn II.12), so
the anomalous dimension mixing operator A into operator B is the

P
B0 �AB0 over all the operators {B0} who are

identical to B. This rule applies to the second matrix of eqn(III.10). Then for the penguins, the rule is to sum also
over the identical operators in the column: �AB =

P
A0,B0 �A0B0 . Then the anomalous dimension matrix, in the basis

(CNSI , CH2, CCCNSI+, CM2), is

[�] = �3g2



2
664

5
2 0 �1 0
2 1

2 �1 0
0 0 1

2 0
0 0 0 �1

3
775 +

g2Nc

3

2
64

1 0 0 0
0 1 0 0
�5 1 4 0
0 0 0 1

3
75 +

1



2
64
�4� 2� 0 �2⌘
2� �4� 0 2⌘
�4� +4� �2� �4⌘

0 0 0 0

3
75 (III.11)

IV. RESULTS

This section presents the LFV that is induced by electroweak loop corrections to NSI operators. Section IVA sum-
marises relevant experimental constraints on LFV, then section IV B applies these constraints to the LFV coefficients
induced by loop corrections to NSI. Possible cancellations allowing to avoid these constraints are discussed in section
IV C.

As in the singlet case, we have log contribution

εeσ
eL

=
v2

Λ2

(
−Ce

M2,q + r(Ce
NSI,q + Ce

CCNSI+,q)
)

∆Ceσee
V ,LL =

v2

Λ2

log(Λ/mW )

16π2

(
[
15
2

g2 + 2λ]Ceσ
M2,` +

g2

3
Ceσ

CCNSI+,`

)
1

(4π)4 log2 contribution can be derived in similar manner
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Summary NSI↔ LFV

We typically have one-loop sensitivities to charged lepton
flavour violation form NSI with flavour structure. If tree
level is tuned to zero.
If one-loop is also tuned to zero, we obtain

1
(4π)2

contributions.
Also for ρσqq and τµ ee
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Lepton Number Violation and LFV

In SMEFT neutrino masses are generated via
dimension-5 lepton number violating operators
I neutrino oscillations imply non-trivial flavour structure
I this will generate charged lepton flavour violation via

RGEs
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∆L = 2 operators in 2HDM

Dimension-5 Operator Generate Neutrino Masses

Lepton Sector

14

3. Third, we suppose there is no LFV in the renormalisable couplings of the 2HDM (in particular, in the
lepton Yukawas), so that when matching the 2HDM + dimension-five operators onto the SMEFT at the
intermediate scale m22, no additional LFV operators are generated.

Consider first the renormalisable Lagrangian. The Yukawa couplings can be written [30]:

δL2HDM = −(ν, eL)[Y (1)]

(
H+

1

H0
1

)
e − e[Y (1)]†H†

1ℓ− (ν, eL)[Y (2)]

(
H+

2

H0
2

)
e − e[Y (2)]†H†

2ℓ , (2.11)

where the flavour indices are implicit, and the basis in (H1, H2) space is taken to be the “Higgs basis” where
⟨H2⟩ = 0. We suppose that [Y (1)] and [Y (2)] are simultaneously diagonalisable on their lepton flavour indices.

The second Yukawa coupling changes the Equations of Motion for the leptons, so the 2HDM version of
the equation-of-motion vanishing operators (given in eqn (2.9) for the single Higgs model) should be modified.
As a result, the operators OHDℓ(1) and OHDℓ(3) should not be replaced only by the SMEFT operator OeH , as
given in eqns (2.10), but also by an operator with an external H2 leg. However, since we neglect dimension-six
operators with external H2, we use the relations (2.9) and (2.10) also in the 2HDM case.

In this “Higgs” basis, the most general Higgs potential is

V = m2
11H

†
1H1 + m2

22H
†
2H2 − [m2

12H
†
1H2 + h.c.]

+
1

2
λ1(H

†
1H1)

2 +
1

2
λ2(H

†
2H2)

2 + λ3(H
†
1H1)(H

†
2H2) + λ4(H

†
1H2)(H

†
2H1)

+

{
1

2
λ5(H

†
1H2)

2 +
[
λ6 (H†

1H1) + λ7(H
†
2H2)

]
H†

1H2 + h.c.

}
. (2.12)

In order to decouple the additional Higgses, we can, for instance, set m2
12 = 0 and assume m2

22 ≫ m2
W , or leave

m2
22 free, and impose m2

12 = λ6 = λ7 = [Y (2)] = 0.
At dimension-five in the 2HDM, there are four operators [16]:

δL = +
Cαβ

5

2Λ
(ℓαεH

∗
1 )(ℓcβεH

∗
1 ) +

Cαβ∗
5

2Λ
(ℓcβεH1)(ℓαεH1)

+
Cαβ

21

2Λ

(
(ℓαεH

∗
2 )(ℓcβεH

∗
1 ) + (ℓβεH

∗
1 )(ℓcαεH

∗
2 )
)

+
Cαβ∗

21

2Λ

(
(ℓcβεH2)(ℓαεH1) + (ℓcαεH1)(ℓβεH2)

)

+
Cαβ

22

2Λ
(ℓαεH

∗
2 )(ℓcβεH

∗
2 ) +

Cαβ∗
22

2Λ
(ℓcβεH2)(ℓαεH2)

−Cαβ
A

2Λ
(ℓαεℓ

c
β)(H

†
1εH

∗
2 ) − Cαβ∗

A

2Λ
(ℓcβεℓα)(H2εH1) , (2.13)

where {C5, C22, C21} are symmetric on flavour indices (so can contribute to neutrino masses). In the O21

operator, (ℓαεH
∗
2 )(ℓcβεH

∗
1 ) = (ℓβεH

∗
1 )(ℓcαεH

∗
2 ), but both terms are retained here because they are convenient

in our Feynman rule conventions3.
Tree-level LFV is often avoided in the 2HDM by imposing a Z2 symmetry on the renormalisable La-

grangian: if under the Z2 transformation, H1 → H1 and H2 → −H2, then [Y2], λ6 and λ7 are forbidden. We
will later discuss this case, but do not impose the Z2 symmetry from the beginning, because it also forbids the
C21, C12 and CA coefficients at dimension-five.

3 The EFT Calculation

3.1 Diagrams and Divergences
Diagrams with two insertions of the dimension-five operators are illustrated in figures 1 and 2. We focus on
the lepton flavour violating diagrams of figure 1, and discuss the four-Higgs operators generated by figure 2 in
Appendix G, because four-Higgs interactions are flavour conserving and arise in the SM.

3The operator O21 can also be written as 2(ℓβϵH∗
1 )(ℓc

αϵH∗
2 ) +(ℓβϵℓc

α)(H∗
1 ϵH∗

2 ) using the identity (A.9), as done in the first
reference of [16].

4

h.c.

These operators mix into the Z-Penguin and  
other dimension 6-Operators.  

Calculation in SMEFT completes ADMs up to dimension 6
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Anomalous Dimensions

QHL(1) = i (e̅L γ$ $L)(Φ⟊D$Φ) , QHL(3) = i (e̅L γ$ τa $L)(Φ⟊ τa D$Φ)

Anomalous Dimensions

RGE govern mixing into the Z-Penguin:

15

dimension-six operator space. These anomalous dimensions parametrise the mixing of figure 1 in the 2HDM
(recall that a factor 1/16π2 is scaled out of our anomalous dimensions):

(C⃗[γ̃]C⃗†)βαHℓ(1) = −Cβρ
5

3δρσ
2

C∗σα
5

−Cβρ
21

3δρσ
2

C∗σα
21 + Cβρ

A

δρσ
2

C∗σα
A (3.17)

(C⃗[γ̃]C⃗†)βαHℓ(3) = Cβρ
5 δρσC

∗σα
5

+Cβρ
21 δρσC

∗σα
21 + Cβρ

A

δρσ
2

C∗σα
21 − Cβρ

21

δρσ
2

C∗σα
A (3.18)

(C⃗[γ̃]C⃗†)βαeH = Cβρ
5

3[Y1]ηαδρσ
2

C∗ση
5

+2[(C21 − CA)C∗
5Y2]

βα +
1

2
[(CAC∗

A + CAC∗
21 − C21C

∗
A − C21C

∗
21)Y1]

βα (3.19)

(C⃗[γ̃]C⃗†)ρσβαℓℓ = −Cβρ
5

1

2
C∗σα

5

−Cβρ
22

1

2
C∗σα

22 − Cβρ
21 C∗σα

21 + Cβρ
A C∗σα

A (3.20)

where the operator label and flavour indices on the left-hand-side refer to the dimension-six operator (the
dimension-five indices are summed).

In the next section, we will need the RGEs for dimension-five operators. Recall that in the single Higgs
model, [γ] is in principle a 9×9 matrix (or 6×6, if one uses the symmetry of Cαβ

5 ), mixing the elements of
C5 among themselves. However, in the basis where the charged leptons are diagonal, [γ] is diagonal, and the
anomalous dimension for the coefficient Cαβ

5 of the Weinberg operator is [16]:

16π2γ = −3

2
([Ye]

2
αα + [Ye]

2
ββ) + (λ− 3g2 + 2Tr(3[Yu]†[Yu] + 3[Yd]

†[Yd] + [Ye]
†[Ye])) (3.21)

where the Higgs self-interaction in the SM Lagrangian is λ
4 (H†H)2, and [Yf ] are the fermion Yukawa matrices.

4 Phenomenology
In order to solve the RGEs, it is convenient to define t = 1

16π2 ln µ
mW

, in which case the one-loop RGEs for
dimension-five and -six operator coefficients can be written as

d

dt
C̃ = C̃ · γ̂ + C⃗ · [γ̃] · C⃗†

d

dt
C⃗ = C⃗ · [γ] . (4.1)

These are among the most familiar of differential equations, whose solutions have the form

C⃗(tf ) = C⃗(0) exp{γtf} ≃ C⃗(0)
[
1 + γ

1

16π2
ln

(
Λ

mW

)
+ ...

]
(4.2)

C̃(tf ) =
[ ∫ tf

0

dτC⃗(0)eγτ [γ̃][eγτ ]T C⃗†(0)e−γ̂τ + C̃(0)
]
eγ̂tf (4.3)

where 16π2tf = ln
(

Λ
mW

)
. In these solutions, the anomalous dimension matrices were approximated as con-

stant; this is not a good approximation, because the anomalous dimensions depend on running coupling con-
stants, in particular the Yukawa couplings can evolve significantly above mW .

A simple solution to eqn (4.3) can be obtained by expanding the exponentials under the integral, as in
eqn (4.2):

C̃(mW ) = C̃(Λ) − C̃(Λ)γ̂
1

16π2
ln

Λ

mW
− C⃗(Λ)[γ̃]C⃗†(Λ)

1

16π2
ln

Λ

mW
+ ... (4.4)

8

can be cancelled by the counterterms (16π2ϵ)−1[C21C
∗
5Y2]

βα and −[CAC∗
5Y2]

βα/(16π2ϵ). Including also the
additional counterterms for Oβα

HDℓ(1) and Oβα
HDℓ(3) in the 2HDM gives

∆(C⃗[Z̃]C⃗†)βαeH =
1

4

1

16π2ϵ

(
4[(C21 − CA)C∗

5Y2]
βα + [(CAC∗

A + CAC∗
21 − C21C

∗
A − C21C

∗
21)Y1]

βα
)

. (3.12)

Finally, for the four-lepton operator, there are additional counterterms in the 2HDM to cancel the diver-
gences induced by double-insertions of O22, of O21, and of OA. (The possible diagrams with an insertion of
both O21 and OA vanish due to anti-symmetry.) We obtain:

∆(C⃗[Z̃]C⃗†)ρσβαℓℓ = −1

4

1

16π2ϵ
Cρβ

22 C∗ασ
22 − 1

2

1

16π2ϵ
Cρβ

21 C∗ασ
21 +

1

2

1

16π2ϵ
Cρβ

A C∗ασ
A . (3.13)

3.3 The Renormalisation Group Equations
The contribution of dimension-five operators to the Renormalisation Group Equations of dimension-six op-
erators, due to double insertions, can be obtained following the discussion of Herrlich and Nierste [31]. The
derivation is presented in Appendix C. Here we schematically outline the result.

The bare Lagrangian coefficients are defined at one loop as in eqn (3.1), where the counterterm for one
operator can depend on the coefficients of other operators. Recall that the bare coefficients are independent
of the dimensionful parameter µ, and that the renormalised Cs are dimensionless. Using C⃗ = µ−2ϵC⃗bare[Z

−1]
allows one to obtain, in 4 − 2ϵ dimensions:

(16π2)µ
d

dµ
C⃗ = −C⃗

{
2ϵ(16π2) + (16π2)

[
µ

d

dµ
Z

]
[Z−1]

}
≡ C⃗[γ] − 2ϵ(16π2)C⃗ (3.14)

where [γ] denotes the 4-dimensional anomalous dimension matrix, and we (unconventionally)4 factor the 16π2

out of the anomalous dimension matrices. While the −2ϵ term does not contribute in d = 4 dimensions to the
mixing of the dimension-five operators, it plays an essential role in the renormalisation group equations of the
dimension-six operators.

For the dimension-six coefficients, it is straightforward to obtain from eqn (3.1):

µ
d

dµ
C̃ = − C̃ ·

{
µ

d

dµ
Ẑ

}
Ẑ−1 + 2ϵ C⃗ · Z̃ · C⃗†Ẑ−1

− C⃗ ·
[
µ

d

dµ
Z̃

]
· C⃗†Ẑ−1 − C⃗ · [Z]

[
µ

d

dµ
Z−1

]
· [Z̃] · C⃗†Ẑ−1 − C⃗ · [Z̃] ·

[
µ

d

dµ
Z−1

]†
[Z]†C⃗†Ẑ−1 ,

(3.15)

where terms of O(ϵ) that vanish in 4 dimensions are neglected, and the summation over flavour and operator
indices is indicated with a dot. The second line can be dropped, because the first term vanishes at one loop,
and the remaining terms are of two-loop order because both [Z̃] and d[Z−1]/dµ arise at one-loop. So the
renormalisation group equations for the dimension-six coefficients can be written

(16π2)µ
d

dµ
C̃ = C̃γ̂ + C⃗[γ̃]C⃗† , (3.16)

where γ̂ is the one-loop anomalous dimension matrix for dimension-six operators [19] and [γ̃] = 2(16π2)ϵ[Z̃] is
the anomalous dimension tensor.

We give below the anomalous dimensions describing the one-loop mixing of double-insertions of dimension-
five operators into LFV dimension-six operators, in the 2HDM. The single Higgs model can be easily retrieved
by setting C21 = CA = C22 = 0 in the equations below. The anomalous dimension tensor mixing a pair of
dimension-five operators into a dimension-six operator is neccessarily a three-index object; below we sum over
the two dimension-five indices, and give these summed components of the tensor as elements of a vector in the

4The usual definition [15] is µ d
dµ

C = Cγ, then γ is expanded in loops: γ = αs
4π

γ0 + .... However, here we only work at one
loop, have other subscripts on our γs and the one loop mixing of dimension-five-squared into dimension-six is not induced by a
renormalisable coupling. So we factor out the 16π2.
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And then e.g. constrained by Br($ → 3e) < 10-10

21 / 23



Sensitivities Sensitivity

From the left-handed contribution to Br($ → 3e) < 10-10

This results in a sensitivity to the dimension 5-operator 
Wilson coefficients:

16
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Conclusion

If heavy new physics generates NSI
I Charged LFV is sensitivity to the off-diagonal NSI

parameter space
I There could be cancellations between tree-level and

one-loop
I or between one-loop and two-loop

Obviously lepton number violation gives non observable
contribution to LFV for a standard model field content
I This can change if one considers an extended Higgs

sector
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