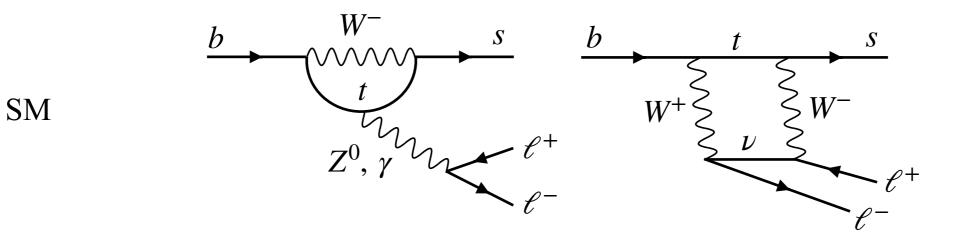
LFV, lepton universality, and rare decay searches at the LHC

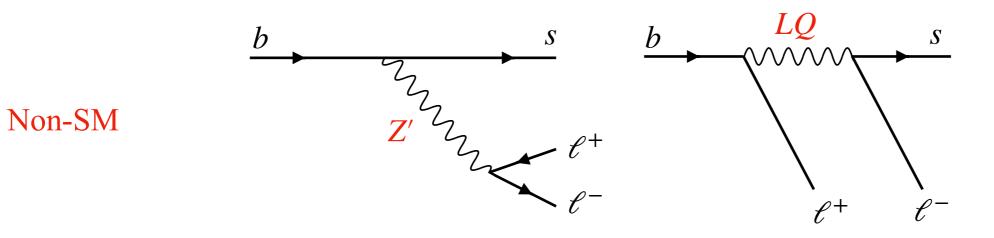
Zhenzi Wang

On behalf of LHCb, with results from ATLAS and CMS

University of Zurich

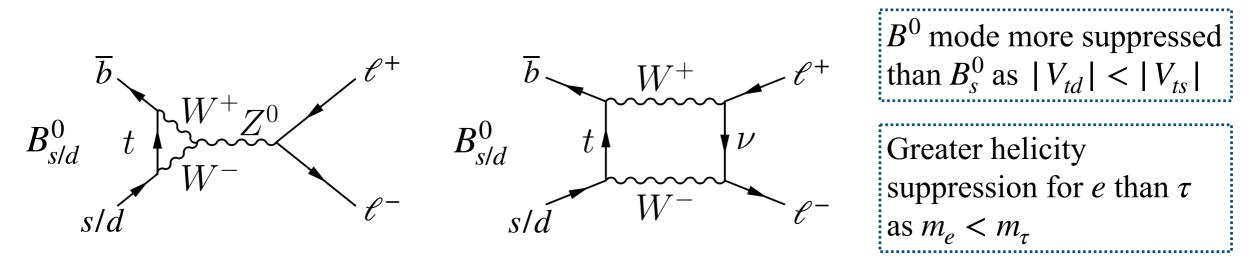
22 October 2019




Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Rare decays

- Rare decays of b-hadrons are flavour changing neutral current (FCNC) decays that take place only at loop level

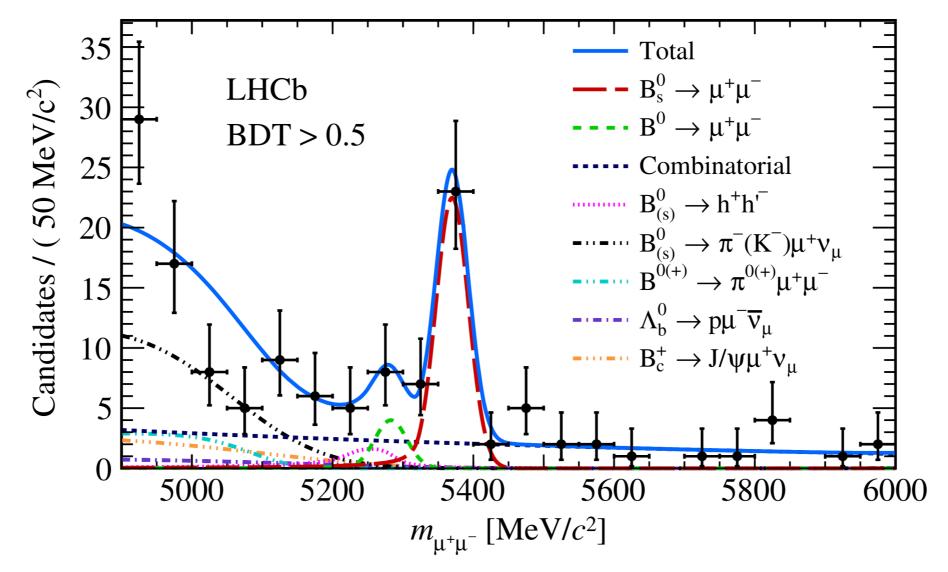

- Sensitive to theories beyond the Standard Model (SM)

- Observable measurements => indirect search for non-SM effects
- Several recent results have hinted at departure from SM expectations => active area of investigation

Rare decays: $B_{(s)}^0 \to \ell^+ \ell^-$

- $B_{(s)}^0 \to \ell^+ \ell^-, \ell = e, \mu, \tau$ decays are helicity suppressed FCNC decays

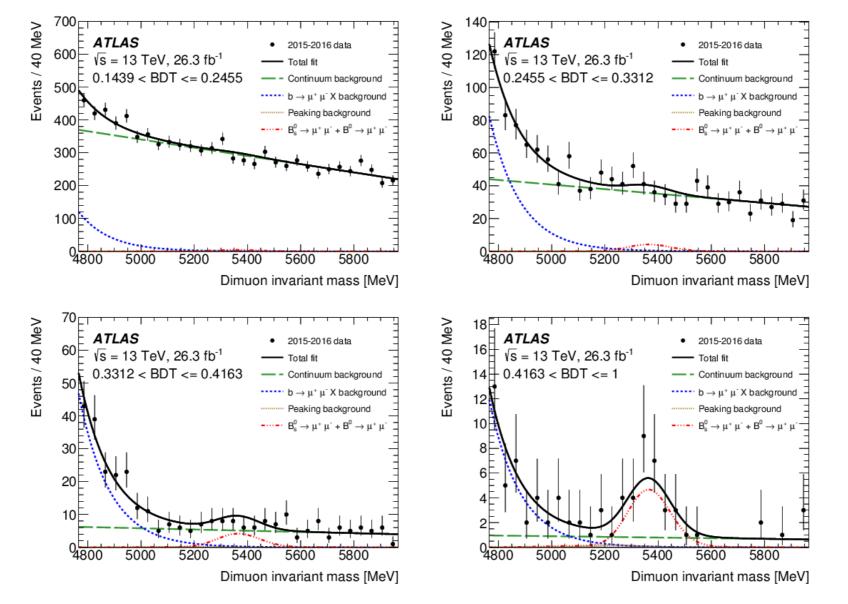
– Purely leptonic final state => precise SM predictions of branching fractions (BFs):


- $\mathscr{B}(B_s^0 \to e^+e^-)/\mathscr{B}(B^0 \to e^+e^-) = (8.54 \pm 0.55) \times 10^{-14}/(2.48 \pm 0.21) \times 10^{-15}$
- $\mathscr{B}(B_s^0 \to \mu^+ \mu^-)/\mathscr{B}(B^0 \to \mu^+ \mu^-) = (3.65 \pm 0.23) \times 10^{-9}/(1.06 \pm 0.09) \times 10^{-10}$
- $\mathscr{B}(B_s^0 \to \tau^+ \tau^-)/\mathscr{B}(B^0 \to \tau^+ \tau^-) = (7.73 \pm 0.49) \times 10^{-7}/(2.22 \pm 0.19) \times 10^{-8}$ [PRL 112 (2014) 101801]
- Muon mode measurements/searches made by ATLAS, CMS and LHCb
 - $B_s^0 \to \mu^+ \mu^-$ seen [Nature (2015) 14474]
 - $B^0 \rightarrow \mu^+ \mu^-$ no observation yet
- Tau mode searched for by LHCb no evidence yet
- Electron mode measurement at LHCb currently in progress

3

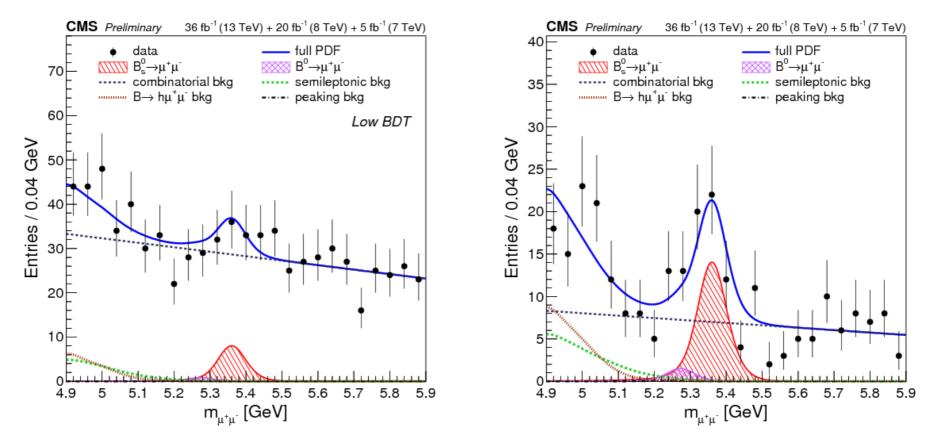
[PRL 118 (2017) 251802]

 $B_{(s)}^0 \rightarrow \mu^+ \mu^-$: LHCb


- Data collected in 2011-2012 (Run 1, 3 fb⁻¹), and 2015-2016 (Run 2, 1.4 fb⁻¹)

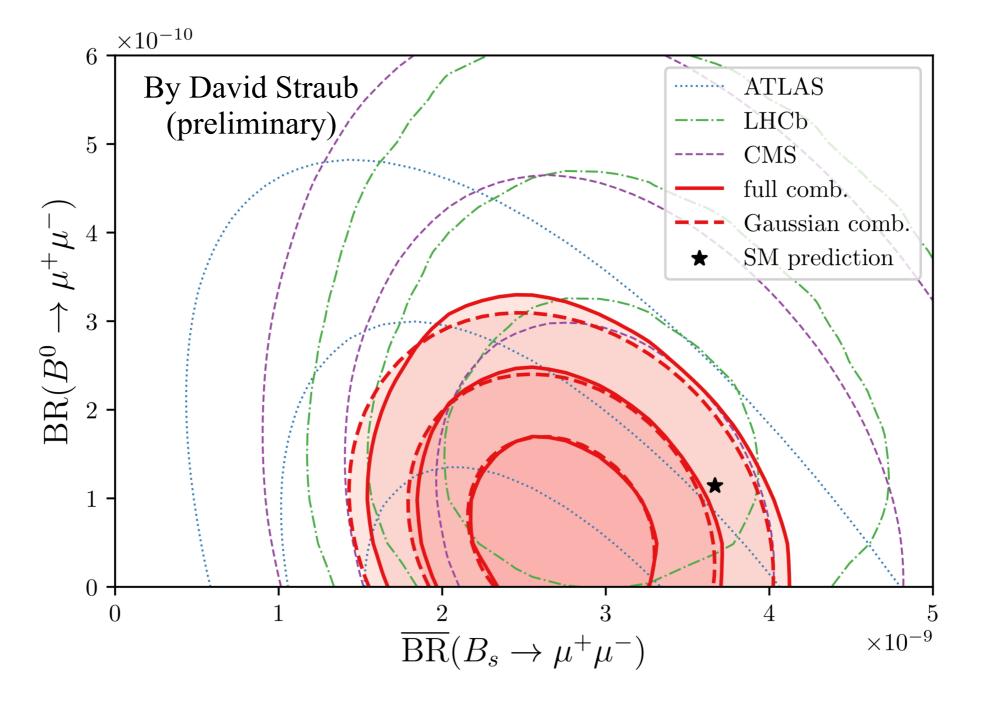
- Normalisation channels: $B^+ \to J/\psi K^+$ (similar trigger), and $B^0_{(s)} \to K^+\pi^-$ (similar topology)
- Extract BF through simultaneous unbinned maximum likelihood (UML) fit to the dimuon invariant mass distributions in five boosted decision tree (BDT) score bins for Run 1 and 2
- Measured $\mathscr{B}(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2} \times 10^{-9})$ first single experiment observation (7.8 σ)
- Previous evidence for B^0 mode not confirmed (1.6 σ): $\mathscr{B}(B^0 \to \mu^+ \mu^-) < 3.4 \times 10^{-10}$ at 95% C.L.

 $B_{(s)}^0 \rightarrow \mu^+ \mu^-$: ATLAS


- Data collected in 2015-2016 (Run 2, 26.3 fb^{-1})
- Single signal component for both B^0 and B_s^0 contributions due to limited resolution
- Extracted BF via simultaneous UML fit to four BDT score bins

- Measured (combined with Run 1) $\mathscr{B}(B_s^0 \to \mu^+ \mu^-) = 3.2^{+1.1}_{-1.0} \times 10^{-9} (2.8^{+0.8}_{-0.7} \times 10^{-9})$
- Determined (combined with Run 1) $\mathscr{B}(B^0 \to \mu^+ \mu^-) < 4.3 \times 10^{-10} (2.1 \times 10^{-10})$ at 95% C.L.
- $B_s^0 \rightarrow \mu^+ \mu^-$ Run 1+2 significance: 4.6 σ

 $B_{(s)}^0 \rightarrow \mu^+ \mu^-$: CMS


- Preliminary results only
- Data collected in 2011, 2012 and 2016 (61 fb^{-1})
- Extracted BF via simultaneous UML fit to 14 subsamples (four data collection eras × two bins in pseudorapidity, each sample is split further, where possible, into two regions based on BDT score)
- UML fit to $m_{\mu\mu}$, relative mass resolution ($\sigma(m_{\mu^+\mu^-})/m_{\mu^+\mu^-}$), and a binary distribution with 1 (-1) for muon tracks bending towards (away from) each other

- Measured $\mathscr{B}(B_s^0 \to \mu^+ \mu^-) = (2.9^{+0.7}_{-0.6}(\exp) \pm 0.2(\operatorname{frag})) \times 10^{-9}$ with 5.6 σ significance
- No significant excess observed for B^0 decay, $\mathscr{B}(B^0 \to \mu^+ \mu^-) < 3.6 \times 10^{-10}$ at 95% C.L.

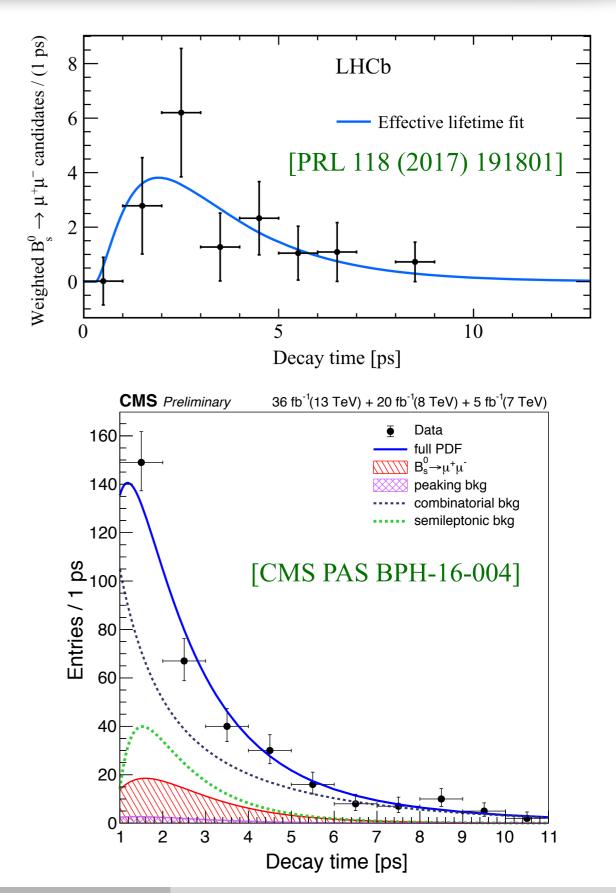
 $B_{(s)}^0 \to \mu^+ \mu^-$ results

- Likelihood contours (and combination) of the most recent ATLAS, LHCb and CMS (preliminary) results:

- Good agreement with SM in general, but starting to become interesting...

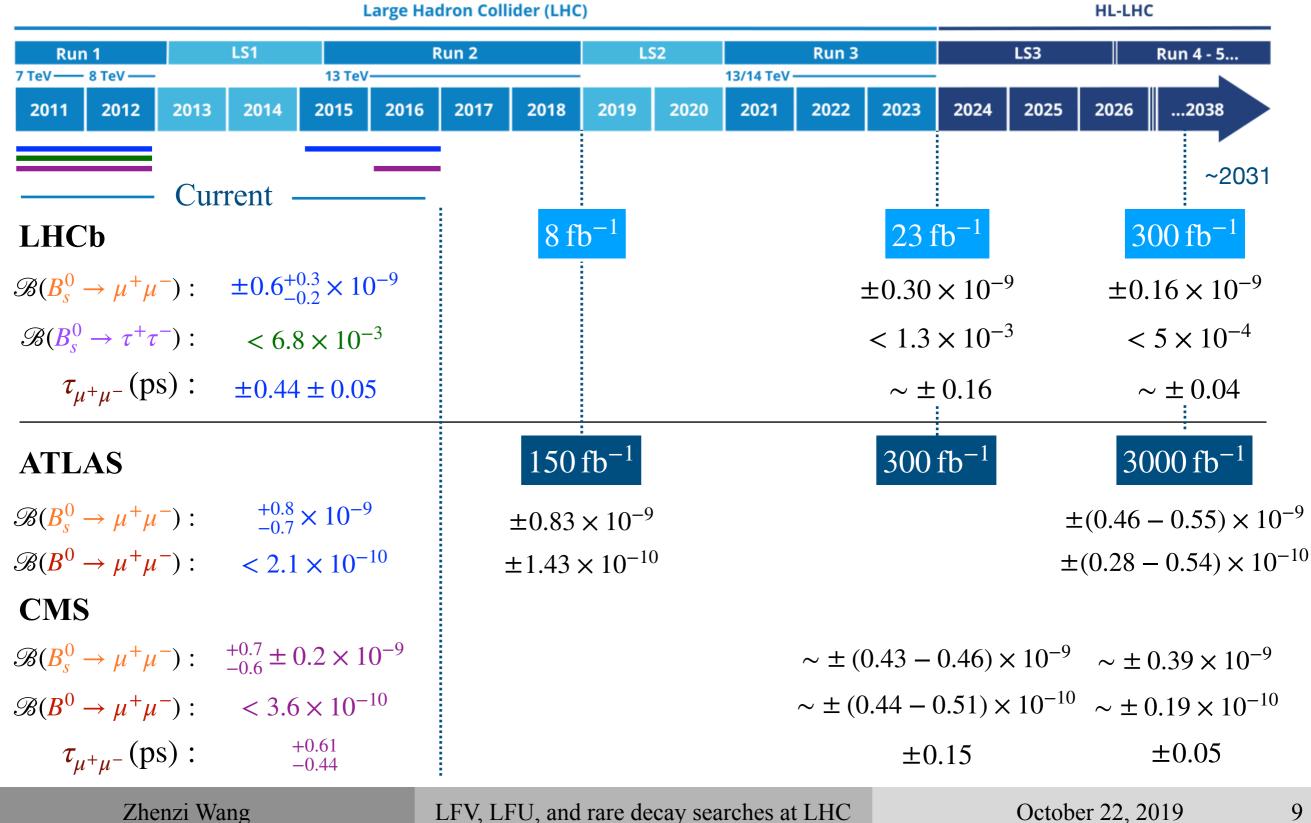
$B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime measurements

- Measurement of $B_s^0 \rightarrow \mu^+ \mu^-$ lifetime provides a complementary test of SM
- The effective lifetime (without distinguishing B_s^0/\overline{B}_s^0) can be expressed as:


$$\tau_{\mu^{+}\mu^{-}} = \frac{\tau_{B_{s}^{0}}}{1 - y_{s}^{2}} \left(\frac{1 + 2A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s} + y_{s}^{2}}{1 + A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s}} \right)$$

$$\tau_{B_s^0} = 1.510 \pm 0.005 \,\mathrm{ps}$$

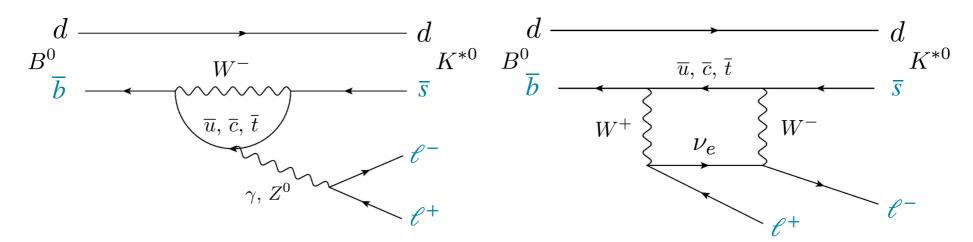
$$y_s \equiv \tau_{B_s^0} \Delta \Gamma/2 = 0.062 \pm 0.006$$


$$A_{\Delta\Gamma}^{\mu^+\mu^-} \equiv \frac{\Gamma(B_s^H \to \mu^+\mu^-) - \Gamma(B_s^L \to \mu^+\mu^-)}{\Gamma(B_s^H \to \mu^+\mu^-) + \Gamma(B_s^L \to \mu^+\mu^-)}$$

- In the SM, $A_{\Delta\Gamma}^{\mu^+\mu^-} = 1$, but in beyond SM theories it may be anywhere in the range of [-1, 1]
- Both LHCb and CMS measured $\tau_{\mu^+\mu^-}$, yielding:
 - 2.04 ± 0.44 (stat) ± 0.05 (syst) ps (LHCb)
 - $1.70_{-0.44}^{+0.61}$ ps (CMS preliminary)
- Results are in agreement with SM

$B_{(s)}^0 \to \ell^+ \ell^-$ decays: the future

- LHCb, ATLAS and CMS produced estimations of total uncertainties/BF limits for future runs/ upgrades: [LHCB-PUB-2018-009] [ATL-PHYS-PUB-2018-005] [CMS PAS FTR-14-013/-015]

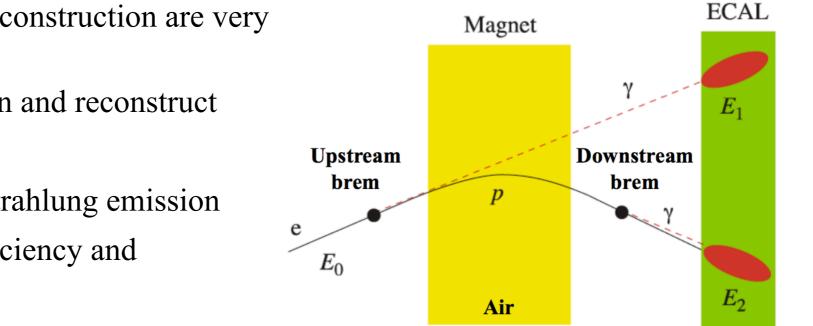


Zhenzi Wang

October 22, 2019 9

Rare decays: $b \to s\ell^+\ell^-$ processes

- Another group of rare b-hadron FCNC decays feature the underlying $b \rightarrow s\ell^+\ell^-$ transition


- Measurements of observables of these decays have shown some interesting (albeit inconclusive) tensions with the SM
- Of particular interest are 'clean' observables with precise SM predictions, in particular ratios of branching fractions ($R_{K^{(*)}}$),

$$R_{K^{(*)}} = \frac{\int_{q_{min}^2}^{q_{max}^2} \frac{d\Gamma(B \to K^{(*)}\mu^+\mu^-)}{dq^2} dq^2}{\int_{q_{min}^2}^{q_{max}^2} \frac{d\Gamma(B \to K^{(*)}e^+e^-)}{dq^2} dq^2}$$
[PRD 69 (2003) 074020]

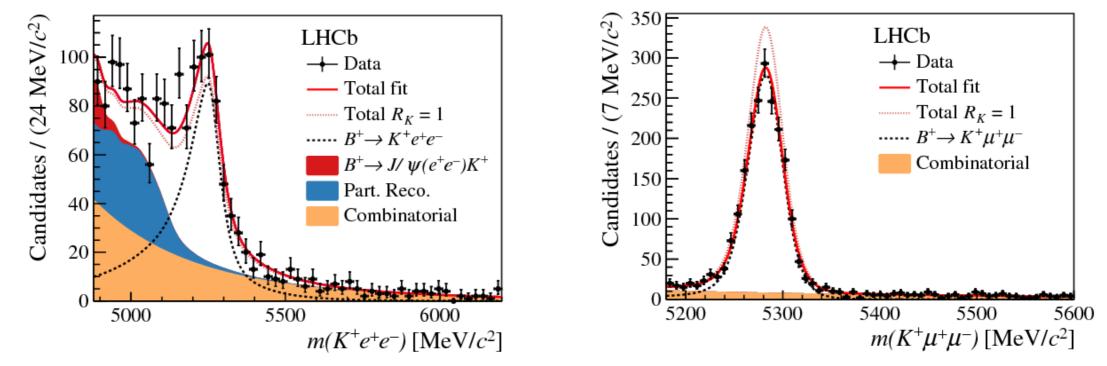
Lepton flavour universality (LFU): electroweak couplings are identical for all lepton flavours, and differences between decay modes are due only to their mass differences

- Most recent (and precise) update to R_K uses data collected in 2011, 2012, and 2015, 2016

- $R_K = 1 \pm \mathcal{O}(10^{-2}), 1.1 < q^2 < 6.0 \,\text{GeV}^2/c^4 \,(\text{SM})$ [EPJC 10 (2016) 1140]

- Experimentally, electron and muon reconstruction are very different
- Muons are relatively easy to trigger on and reconstruct
 => higher efficiency
- Electrons undergo significant bremsstrahlung emission
 => reduced trigger/reconstruction efficiency and resolution
- To mitigate experiment-related electron-muon differences, the R_K measurement is made using a double ratio, which makes use of the normalisation mode $B^0 \rightarrow KJ/\psi$:

$$R(K) = \frac{\mathscr{B}(B \to K\mu^+\mu^-)}{\mathscr{B}(B \to KJ/\psi(\to \mu^+\mu^-))} \times \frac{\mathscr{B}(B \to KJ/\psi(\to e^+e^-))}{\mathscr{B}(B \to Ke^+e^-)},$$
$$= \frac{N_{B^+ \to K^+\mu\mu}}{\epsilon_{B^+ \to K^+\mu\mu}} \times \frac{N_{B^+ \to K^+ee}}{\epsilon_{B^+ \to K^+ee}} \times \frac{\epsilon_{B^+ \to K^+J/\psi(\mu\mu)}}{N_{B^+ \to K^+J/\psi(\mu\mu)}} \times \frac{\epsilon_{B^+ \to K^+J/\psi(ee)}}{N_{B^+ \to K^+J/\psi(ee)}},$$


Lepton flavour universality test: R_K

- Several cross-checks to validate the analysis strategy:
 - Measured $r_{J/\psi}$ single ratio:

$$r_{J/\psi} = \frac{\mathcal{B}(B^+ \to K^+ J/\psi(\to \mu^+ \mu^-))}{\mathcal{B}B^+ \to K^+ J/\psi(\to e^+ e^-))} = 1.014 \pm 0.035$$

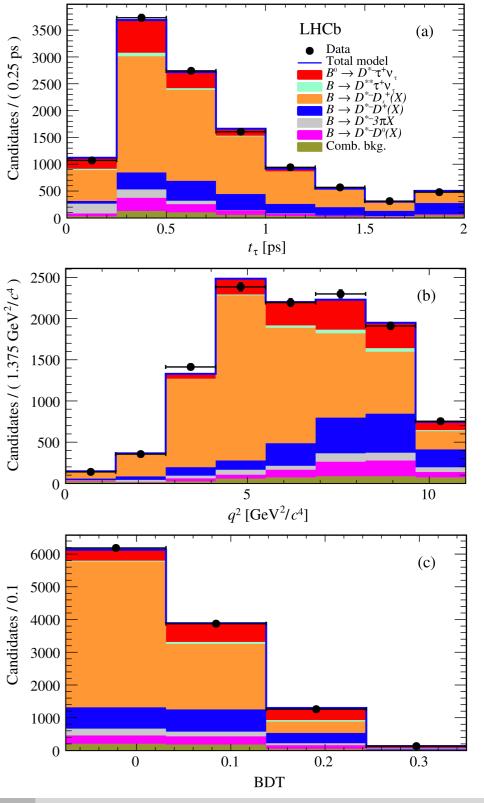
• Measured $R_K^{\psi(2S)}$ double ratio:

$$R_{\psi(2S)} = \frac{\mathscr{B}(B^+ \to \psi(2S)(\to \mu^+ \mu^-)K^+)}{\mathscr{B}(B^+ \to J/\psi(\to \mu^+ \mu^-)K^+)} \Big/ \frac{\mathscr{B}(B^+ \to \psi(2S)(\to e^+ e^-)K^+)}{\mathscr{B}(B^+ \to J/\psi(\to e^+ e^-)K^+)} = 0.986 \pm 0.013$$

- The most recent R_K result is consistent with the previous measurement, and show slight tension at $\sim 2.5\sigma$ with SM:

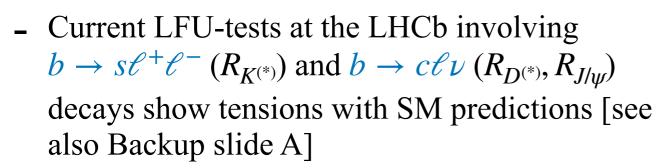
 $R_K = 0.846^{+0.060+0.016}_{-0.054-0.014}$

- LFU-test involving another group of decays processes featuring the underlying tree-level b-hadron decays ($b \rightarrow c\ell\nu$), show notable tension with SM
- Most recent measurement of this set (R_{D^*}) performed by LHCb using data from 2011-2012 (Run 1, 3 fb⁻¹):

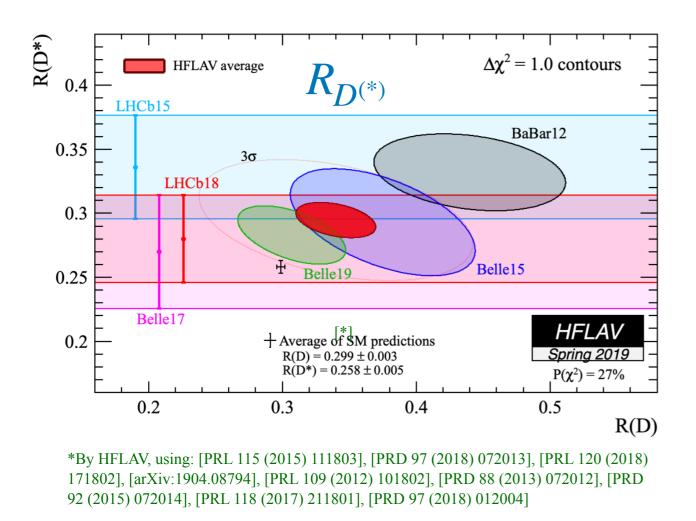

$$R_{D^{*-}} \equiv \frac{\mathscr{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathscr{B}(B^0 \to D^{*-} \mu^+ \nu_{\mu})} \left\{ \begin{array}{c} D^{*-} \to \bar{D}^0 (\to K^+ \pi^-) \pi^- \\ \tau^+ \to \pi^+ \pi^- \pi^+ \bar{\nu}_{\tau} \end{array} \right\}$$

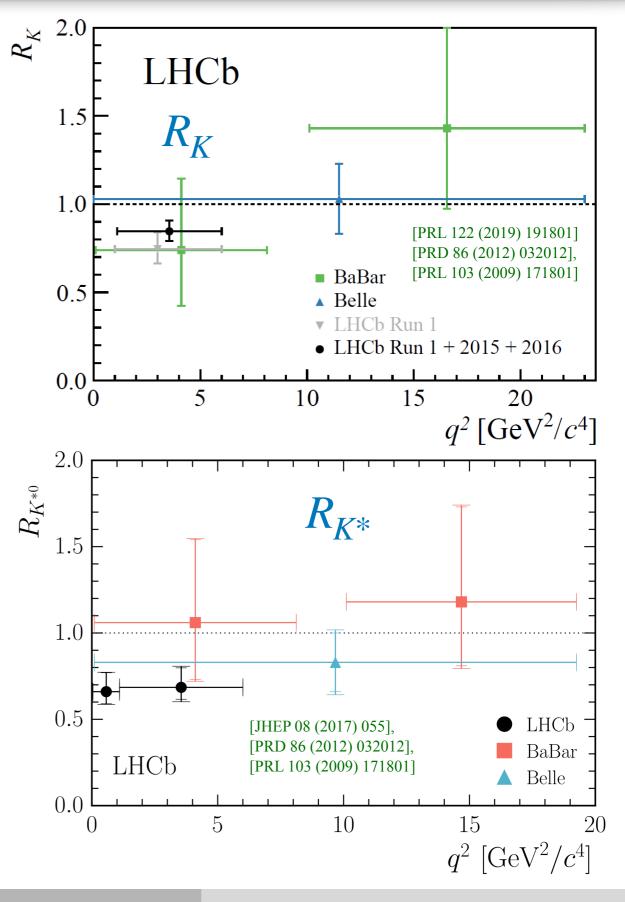
- Strategy: measure $B^0 \to D^{*-} \tau^+ \nu_{\tau}$ normalised to $B^0 \to D^{*-} 3\pi$:

$$K_{D^{*-}} \equiv \frac{\mathscr{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathscr{B}(B^0 \to D^{*-} 3\pi)} \quad R_{D^{*-}} \equiv K_{D^{*-}} \times \frac{\mathscr{B}(B^0 \to D^{*-} 3\pi)_{ext}}{\mathscr{B}(B^0 \to D^{*-} \mu^+ \nu_{\mu})_{ext.}}$$


- Suppress backgrounds from $B \rightarrow D^* 3\pi X$ by imposing that the 3π vertex is downstream of, and significantly detached from, the B^0 vertex
- Background from double-charm (e.g. $B^0 \rightarrow D^{*-}D^+(X)$) decays suppressed using BDT
- Extract signal yield via 3d binned maximum likelihood fit to τ decay time, q^2 and BDT output distributions
- Final result is compatible with SM (within 1σ):

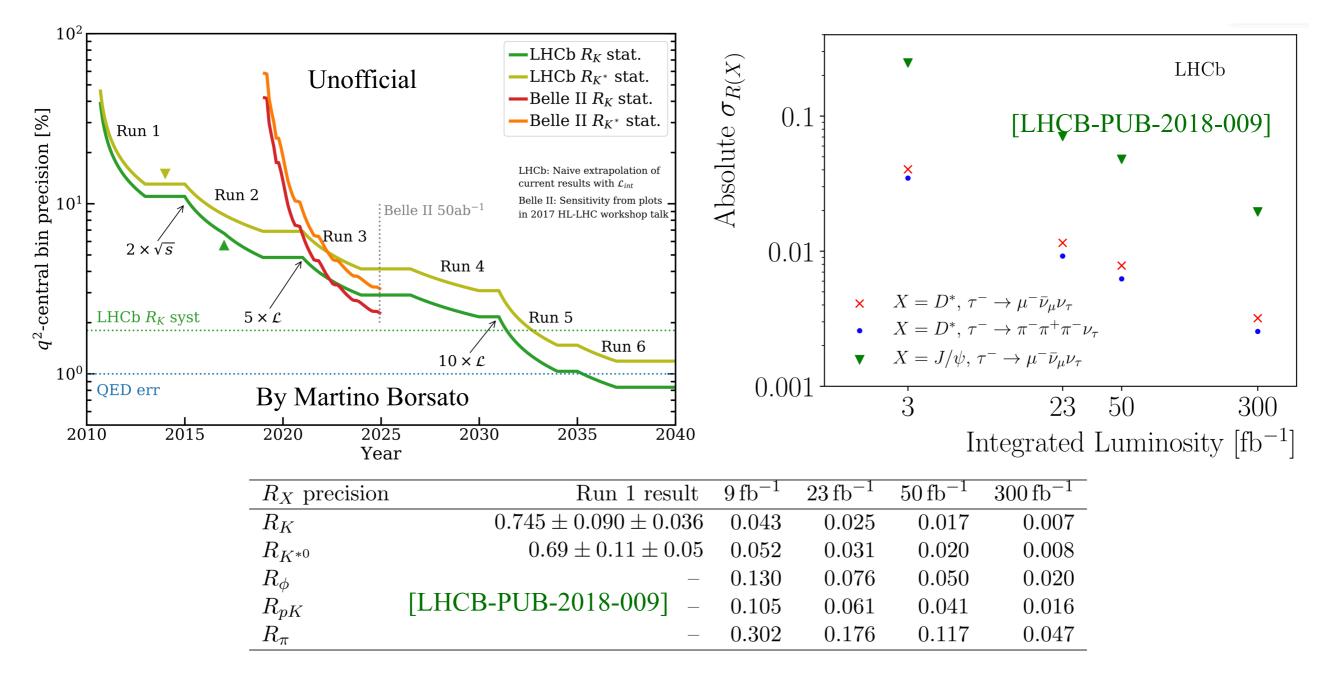
 $R_{D^*} = 0.291 \pm 0.019 \text{ (stat)} \pm 0.026 \text{ (syst)} \pm 0.013 \text{ (ext)}$




October 22, 2019

Lepton flavour universality tests: current status

- More statistics and additional measurements from LHCb and other collaborations (e.g. Belle-II) will help to clarify the picture

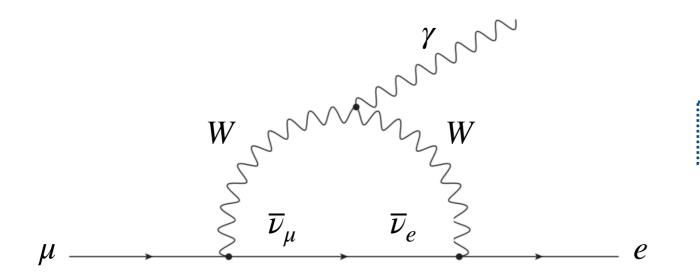


Zhenzi Wang

LFV, LFU, and rare decay searches at LHC

Lepton flavour universality tests: the future

- A number of rare b-hadron decay R_X analyses are currently in progress, including updates to $R_{K^{(*)}}$ using full Run 2 (up to 2018) statistics, R_{ϕ} , R_{pK} and R_{π}
- R_X measurements involving tree-level b-hadron decays are also ongoing, with interesting prospects

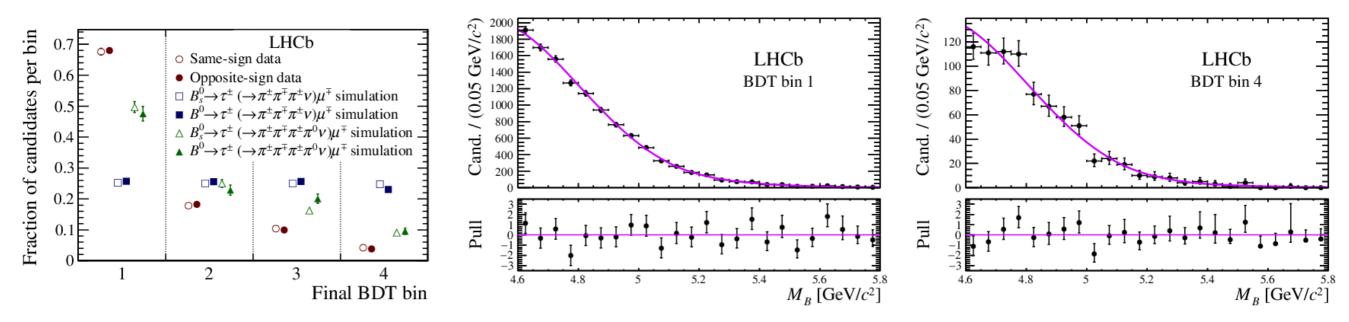


- CMS started to gather data (B-parking) for LFU tests, including the potential measurement of $R_{K^{(*)}}$

Zhenzi Wang

Lepton flavour violation

- Lepton flavour violation (LFV), e.g. $\mu \rightarrow e\gamma$, is forbidden in the SM
- Observations of neutrino oscillations suggest LFV occurs for neutral leptons
- However, no evidence for LFV involving charged leptons has ever been found


 $\mathcal{B}(\mu \to e \gamma)_{SM} < 10^{-50}$

- Recent hints of LFU violation motivate the search for LFV in the decays of b-hadrons, as beyond-SM models capable of accommodating for LFU generally predict charged LFV with measurable BFs
- LHCb is the main experiment involved in the searches for LFV decays of b-hadrons
- Recent developments in this area include searches (at LHCb) for:
 - $B^0_{(s)} \to \tau^{\pm} \mu^{\mp}$
 - $B^+ \to K^+ \mu^{\pm} e^{\mp}$

Lepton flavour violation search: $B_{(s)}^0 \rightarrow \tau^{\pm} \mu^{\mp}$

arXiv:1905.06614

- Analysis performed by LHCb using data collected in 2011-2012 (Run 1, 3 fb^{-1})
- Reconstruct τ from the decay chain $\tau^- \rightarrow a_1^-(1260)\nu_{\tau}, a_1^-(1260) \rightarrow \rho^0(770)(\rightarrow \pi^+\pi^-)\pi^-$
- Normalisation mode: $B^0 \to D^-(\to K^+\pi^-\pi^-)\pi^+$
- Reduce backgrounds with cut based selection, e.g. τ decay time and masses of pion combinations
- Use two BDTs to further reduce backgrounds

- Use a final classifier to split sample into four bins to further enhance signal-background separation
- Extract BF by performing UML fit to $m_{\tau\mu}$ (from analytical reconstruction) in the four bins, taking the expected signal fraction per bin into account
- Obtained BF limits at 95% CL of
 - $\mathscr{B}(B_s^0 \to \tau^{\pm} \mu^{\mp}) < 4.2 \times 10^{-5}$
 - $\mathcal{B}(B^0 \to \tau^{\pm} \mu^{\mp}) < 1.4 \times 10^{-5}$

BF can be as large as $\mathcal{O}(10^{-5})$ in some models with Z'/leptoquarks e.g. [JHEP 11 (2016) 035]

Lepton flavour violation search: $B^+ \to K^+ \mu^{\pm} e^{\mp}$

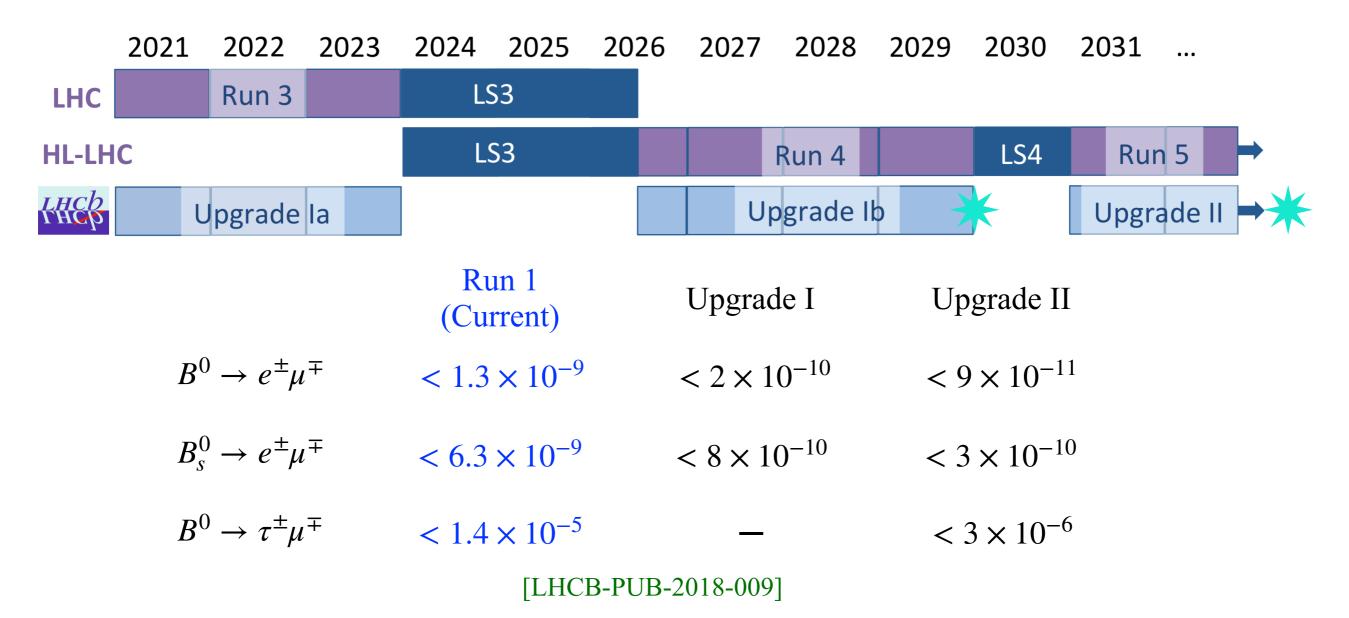
arXiv:1909.01010

BF up to $\mathcal{O}(10^{-8})$ in some

leptoquark models

e.g. [JHEP 06 (2015) 072]

- Search performed by LHCb using data taken in 2011-2012 (Run 1, 3 fb^{-1})
- Different lepton charge combinations studied separately
- One multivariate classifier to reduce combinatorial background, another to reduce background from partially reconstructed b-hadron decays
- Classifier output cuts optimised for best expected BF upper limit
- Found 1 (2) candidates in signal region
- Upper limits at 95% CL determined to be:
 - $\mathscr{B}(B^+ \rightarrow K^+ \mu^- e^+) < 9.5 \times 10^{-9}$
 - $\mathscr{B}(B^+ \to K^+ \mu^+ e^-) < 8.8 \times 10^{-9}$



Zhenzi Wang

LFV, LFU, and rare decay searches at LHC

Lepton flavour violation search - the future

- LHCb has produced some limit estimations for the future:

- Searches for other LFV decays of b-hadrons at LHCb, such as $B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$, $B^+ \to K^+ \tau^{\pm} \mu^{\mp}$ and $\Lambda_b^0 \to \Lambda e^{\pm} \mu^{\mp}$ are in progress
- Limits for $B^+ \to K^+ \tau^{\pm} \mu^{\mp}$ and $B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$ using Upgrade II data are expected to provide strong constraints on beyond-SM models

- Observables of rare b-hadron FCNC decays are ideal for the indirect search for beyond-SM effects
- Leptonic B decay searches/BF measurements carried out for the muon (and tau modes), producing results consistent with SM predictions
- Multiple LFU tests involving b-hadron decays, such as $R_{K^{(*)}}$ (rare $b \to s\ell^+\ell^-$ processes) and $R_{D^{(*)}}$ (tree-level $b \to c\ell\nu$), show slight tension with SM
- LFV searches produced limits that are starting to encroach upon beyond-SM theory predictions in some cases
- Upcoming LFU tests with full Run 2 statistics and beyond will help clarify the current situation
- Significant improvements to more challenging rare decays/LFV searches require larger statistics from Run 3 (end of 2023) onwards

Backup

Other lepton flavour universality tests

- Other tests of LFU at the LHCb include:

$$b \rightarrow s\ell t$$

$$R_{K^*} = \frac{\mathscr{B}(B \to K^* \mu \mu)}{\mathscr{B}(B \to K^* ee)} = 0.69^{+0.11}_{-0.07} \,(\text{stat}) \pm 0.05 \,(\text{syst}) \text{ for } 1.1 < q^2 < 6.0 \,\text{GeV}^2/\text{c}^4$$

 $h \to c\ell \nu$

Compatibility with SM $(1 \pm \mathcal{O}(10^{-2}))$: 2.4 – 2.5 σ [JHEP 08 (2017) 055]

- Tree level decays with large BF (few precent), and precise SM predictions

$$R_{D^{(*)}} \equiv \frac{\mathscr{B}(B^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})}{\mathscr{B}(B^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})}$$

Compatibility with SM (0.252 ± 0.003): ~ 2.1σ [PRD 85 (2012) 094025]

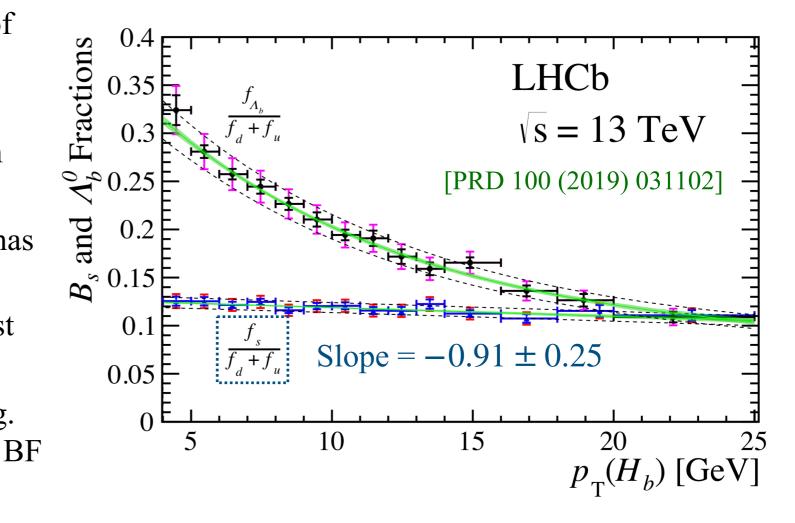
 $\tau^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \nu_{\tau} \qquad : \ 0.336 \pm 0.027 \,(\text{stat}) \pm 0.030 \,(\text{syst}) \qquad [PRD 85 \,(2012) \,094025] \\ \tau^{-} \rightarrow \pi^{+} \pi^{-} \pi^{-} \nu_{\tau} \qquad : \ 0.291 \pm 0.019 \,(\text{stat}) \pm 0.026 \,(\text{syst}) \pm 0.013 \,(\text{ext}) \qquad \text{Compatibility with SM: } 1\sigma \\ [PRL 115 \,(2015) \,111803] \qquad [PRD 97 \,(2018) \,072013] \end{cases}$

$$R_{J/\psi} \equiv \frac{\mathscr{B}(B_c \to J/\psi \tau \bar{\nu}_{\tau})}{\mathscr{B}(B_c \to J/\psi \mu \bar{\nu}_{\mu})} = 0.71 \pm 0.17 \,(\text{stat}) \pm 0.18 \,(\text{syst}) \\ \text{[PRL 120 (2018) 121801]}$$

Compatibility with SM (0.25-0.28)*: $\sim 2\sigma$

*[PLB 452 (1999) 129136] [PRD 74 (2006) 074008] [hep-ph/0211021] [PRD 73 (2006) 054024]

Zhenzi Wang

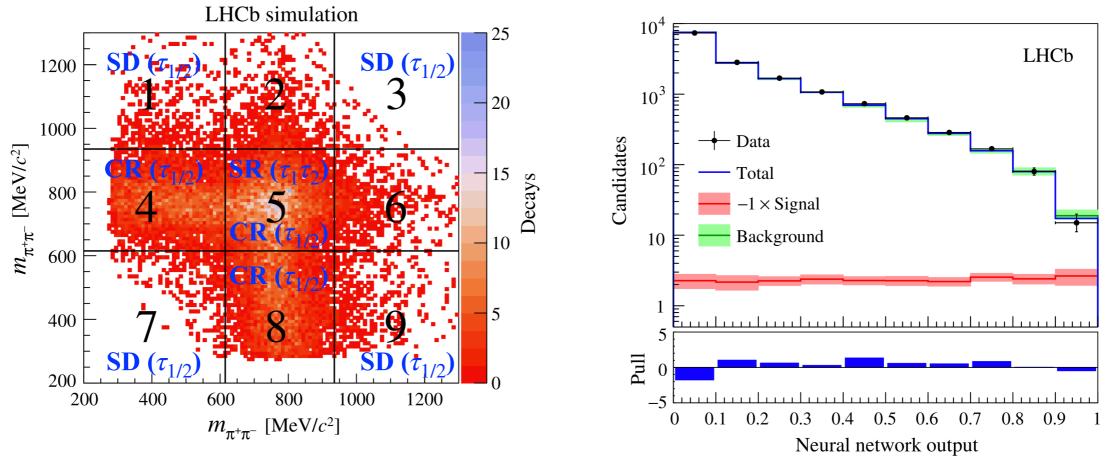

LFV, LFU, and rare decay searches at LHC

 $B_{(s)}^0 \rightarrow \mu^+ \mu^-$: normalisation

- In the determination of $B_{(s)}^0 \to \mu^+ \mu^-$ BF, LHCb, ATLAS and CMS all* use the normalisation mode of $B^+ \to (J/\psi \to \mu^+ \mu^-) K^+$ involving a B^{\pm} [bu]:

$$\mathscr{B}(B_{(s)}^{0} \to \mu^{+}\mu^{-}) = \frac{\mathscr{B}_{norm} \epsilon_{norm}}{N_{norm} \epsilon_{sig}} \frac{f_{norm}}{f_{d(s)}} N_{B_{(s)}^{0} \to \mu^{+}\mu^{-}} \equiv \alpha_{B_{(s)}^{0} \to \mu^{+}\mu^{-}}^{norm} N_{B_{(s)}^{0} \to \mu^{+}\mu^{-}} N_{B_{(s)}^{0} \to \mu^{+}} N_{B_{(s)}^{0} \to \mu^{+}} N_{B_{(s)}^{0} \to \mu^{+}} N_{B_{(s)}$$

- This necessitates the value for f_s/f_d , which has the (latest) LHC-average of 0.252 ± 0.012 (assuming $f_u/f_d = 1$) [PDG]
- However f_s/f_d will vary depending on e.g. centre-of-mass energy and PT
- Some evidence of variation with PT has been seen by LHCb
- CMS added extra uncertainty for most recent measurement (±0.015)
- CMS is considering other options, e.g. $B_s \rightarrow J/\psi\phi$ (need to be careful about BF uncertainty)

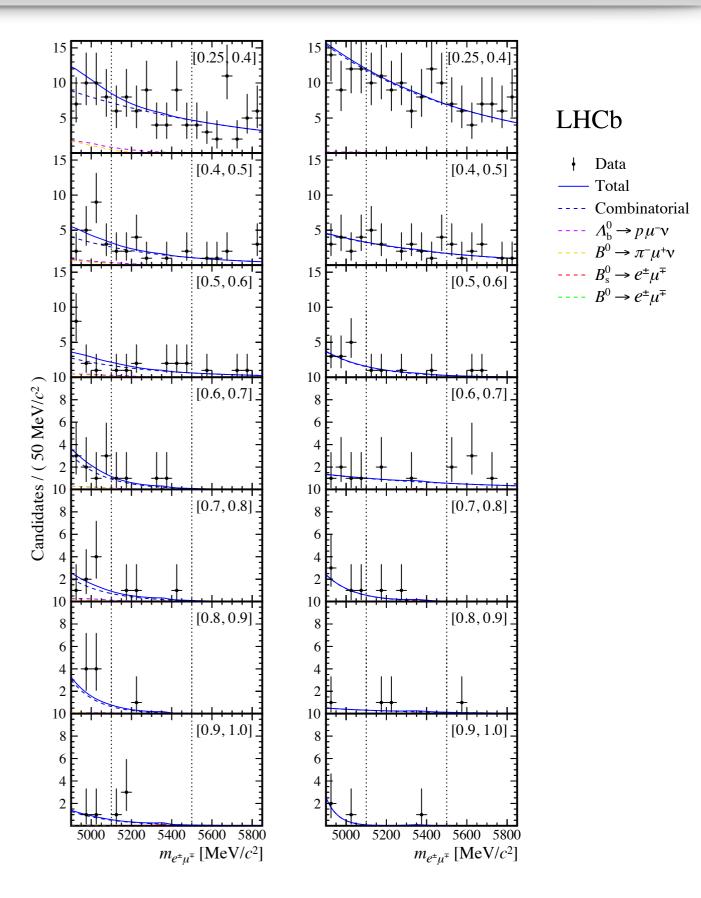


*LHCb uses $B_{(s)}^0 \to K^+\pi^-$ in addition, but contribution to average $(\alpha_{B_{(s)}^0 \to \mu^+\mu^-}^{norm})$ dominated by B^+ mode with more events

В

 $B_{(s)}^{0}$ $\rightarrow \tau^+ \tau^-$: LHCb

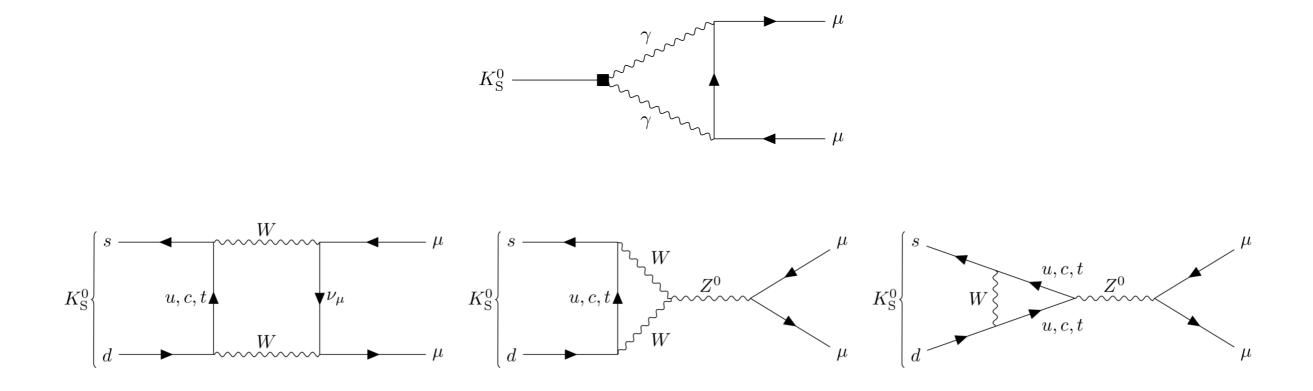
- Data collected in 2011 and 2012 (3 fb^{-1})
- Reconstruct τ from the decay chain $\tau^- \rightarrow a_1^-(1260)\nu_{\tau}, a_1^-(1260) \rightarrow \rho^0(770)(\rightarrow \pi^+\pi^-)\pi^-$
- Normalisation channel: $B^0 \to D^-(\to K^+\pi^-\pi^-)D_s^+(\to K^-K^+\pi^+)$
- Larger BF (less helicity suppressed), but analysis complicated by undetected neutrinos: $m_{\tau\tau}$ allows for only weak signal-background separation, B^0/B_s^0 not resolved => optimise for B_s^0 .
- Use two neural networks (NN) following cut-based selection
- Perform 1d histogram fit to second NN output distribution



- No evidence (yet), BR limits at 95% CL:
 - $\mathscr{B}(B_s^0 \to \tau^+ \tau^-) < 6.8 \times 10^{-3}$
 - $\mathscr{B}(B^0 \to \tau^+ \tau^+) < 2.1 \times 10^{-3}$ (assuming no B_s^0 contribution)

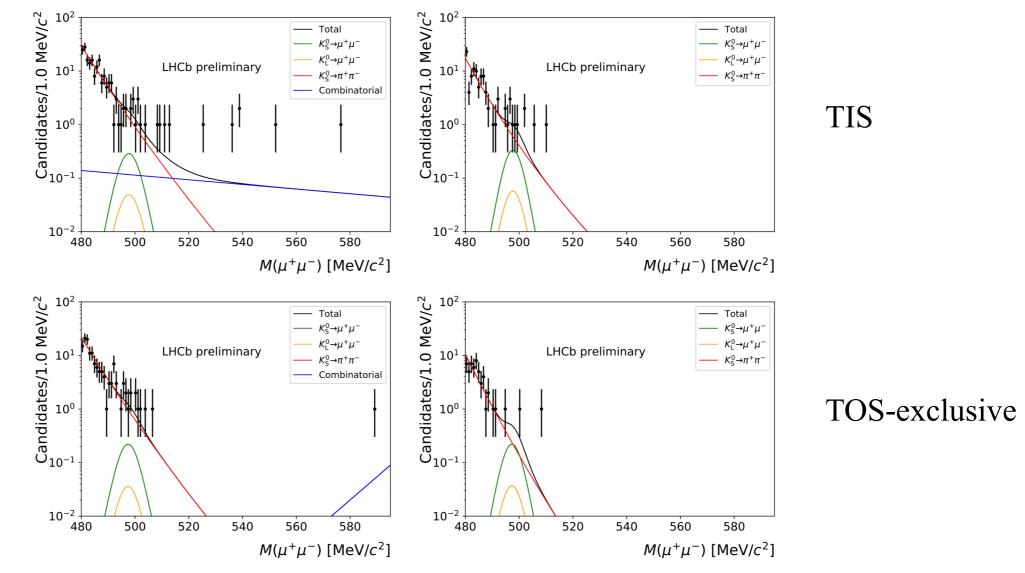
Lepton flavour violation search: $B_{(s)}^0 \rightarrow e^{\pm} \mu^{\mp}$

JHEP 03 (2018) 078


- Analysis performed by LHCb using data collected in 2011-2012 (Run 1, 3fb-1)
- Combinatorial BDT trained using simulated $B_{(s)}^0 \rightarrow e^+\mu^-$ (signal) and same sign $B_{(s)}^0 \rightarrow e^\pm\mu^\mp$ data (background)
- Extract BF via simultaneous UML fit to seven BDT output bins and two bremsstrahlung categories
- No excesses observed, upper limits at 95% CL are found to be:
 - $\mathscr{B}(B_s^0 \to e^{\pm}\mu^{\mp}) < 6.3(7.2) \times 10^{-9}$ for heavy (light) mass eigenstate
 - $\mathscr{B}(B^0 \to e^{\pm}\mu^{\mp}) < 1.3 \times 10^{-9}$

D

Search for
$$K_S^0 \to \mu^+ \mu^-$$


- $K_S^0 \to \mu^+ \mu^-$ is a rare, as-of-yet unobserved FCNC decay that is highly suppressed in the SM, with $\mathscr{B}(K_s^0 \to \mu^+ \mu^-)_{SM} = (5.18 \pm 1.5_{\text{LD}} \pm 0.02_{\text{SD}}) \times 10^{-12}$
- Feynman diagrams showing long distance (LD) and short distance (SD) SM contributions:

- Beyond-SM theories, including some leptoquark models, predict deviations in $\mathscr{B}(K_s^0 \to \mu^+ \mu^-)$
- Recently LHCb reported the (preliminary) result of a search that uses data collected in 2016, 2017 and 2018 (Run 2, 5.6 fb⁻¹)

Search for
$$K_S^0 \to \mu^+ \mu^-$$

- Normalisation mode (similar topology): $K_s^0 \to \pi^+ \pi^-$
- Simultaneous UML fit to $m_{\mu^+\mu^-}$ of twenty subsamples (two trigger categories × ten combinatorial BDT bins)
- $K_s^0 \to \pi^+ \pi^-$ background suppressed via dedicated muon identification BDT, $K_L^0 \to \mu^+ \mu^-$ constrained using well-known BF and K_S^0/K_L^0 efficiency ratio from corrected simulation

- Determined (combined with Run 1) $\mathscr{B}(K_s^0 \to \mu^+ \mu^-) < 2.4 \times 10^{-10} (2.3 \times 10^{-10})$ at 95% C.L.
- $B_s^0 \rightarrow \mu^+ \mu^- \text{Run 1(+2)}$ significance: $1.5(1.4)\sigma$

Zhenzi Wang

LFV, LFU, and rare decay searches at LHC