Beam Test of Deep Diffused APDs
some preliminary results

Matteo Centis Vignali\(^1\), CERN EP-DT Fellow
on behalf of $(see next page)$

27.11.2018
33\(^{rd}\) RD50 Workshop, CERN

\(^1\)matteo.centis.vignali@cern.ch
Authors

- **CERN, Geneva, Switzerland:**

- **Lancaster University, Lancaster, UK:**
 W. Holmkvist

- **LIP, Lisbon, Portugal:**
 M. Gallinaro*

- **Princeton University, Princeton, USA:**
 B. Harrop, C. Lu, K. T. McDonald

- **Radiation Monitoring Devices, Watertown, USA:**
 M. McClish

- **University of Bern, Bern, Switzerland:**
 L. Franconi

- **University of Pennsylvania, Philadelphia, USA:**
 F. M. Newcomer

- **University of Virginia, Charlottesville, USA:**
 S. White*

* also Universidade de Santiago de Compostela, Santiago de Compostela, Spain

◇ also University of Freiburg, Freiburg, Germany

* also CERN
Acknowledgments

The authors would like to thank the RD51 and PICOSEC collaborations for the possibility to participate in the May and August 2018 beam tests. We are particularly grateful to Eraldo, Paco, and Lukas. We would like to thank Francisco for the coating of the detectors and PCB.
Deep Diffused Avalanche Photo Detectors

- Charge multiplication
- Gain: ≈ 500
- Bias: ≈ 1800 V
- Never fully depleted
- Die dimensions: 2.8×2.8 mm2 and 10×10 mm2
- Nominal active area: 2×2 mm2 and 8×8 mm2
- Thickness: $230 - 280 \mu$m
- Custom fabrication process
- Produced by Radiation Monitoring Devices (RMD)

- Diffusion (non-depleted Si)
- Drift (depleted Si)
- Multiplication

Deep Diffused Avalanche Photo Detectors

Doping profile

- Maximum of electric field at pn-junction
- Field exceeds 200 kV/cm enabling impact ionization

8 × 8 mm² DD-APDs

Uniformity of response improved through metallization or mesh readout

DC coupled readout
- Aluminum deposited on both sides
- Metallization on single dies at CMi-EPFL

AC coupled readout
- Mesh on Kapton layer
- Sintered gold on back side
- Studied in previous beam tests ($\sigma_{\Delta t} = 19$ ps)
 S. White, CHEF 2013
 S. White, ps timing workshop 2014
Results from a previous beam test

HFS (mesh readout 8x8 mm RMD AD)
response uniformity measured w 150 GeV muon beam

Figure 10. A photograph of a 1st generation PCB with a mounted mesh APD seen on the right-hand side of the PCB.

Figure 11. (Left) A close up photograph showing the wire bonded APD diodes (Right) A close up photograph showing the wire bonded Ni mesh screen.

HFS Penn2 Peak vs. x -- -- -- -- -- -- -- and Peak vs. y and -- -- -- -- -- -- -- Full Landau Distribution
Setup

- 100 GeV μ, a few runs with π
- CIVIDEC 2 GHz 40 dB ampli
- Agilent 2.5 GHz 10 Gs/s
- Temperature, bias, and current logged
- Tracking and timing provided by RD51
- MCP-PMT signal shaped to have a few points on leading edge
Detectors and Data set

Detectors at the beam test:

- Metallized $8 \times 8 \text{ mm}^2$ APDs
- Sintered gold on n-side $8 \times 8 \text{ mm}^2$ APD
- Mesh-readout $8 \times 8 \text{ mm}^2$ APDs
 (both custom made amplifier and CIVIDEC)
- $2 \times 2 \text{ mm}^2$ APD

Data:

- Several runs with different sensors
- Currently the tracking info is available for only one run ($\approx 12k$ events)
- The presentation focuses on this run
- Sensor under test: metallized APD at 1775 V, other ch not powered
- Peculiar trigger scintillator configuration (see next)

Today only preliminary results are presented
Hitmaps

Hitmap on APD plane

Hit Map Ch1

Hitmap on MCP-PMT plane, with threshold

Hit Map Ch4 0.03 < A < 0.79 V

- Shape determined by scintillator “finger”
- Not usual running condition
- A few tracks are outside the scintillator area

M. Centis Vignali

APDs Beam Test

27.11.2018 9 / 18
Amplitude is fairly uniform on the APD
Some structure can be observed on the MCP-PMT
The amount of photons reaching the photocathode depends on the position
Selection Cuts

Geometrical cuts used to select interesting regions for projections and analysis

APD metallized, 1775 V

Median amplitude Map Ch1, 0.04 < A < 0.35 V

MCP-PMT

Median amplitude Map Ch4, 0.03 < A < 0.79 V

- Similar regions for both detectors
 - ⇒ the detectors were aligned
Signal Amplitude Projections

APD metallized, 1775 V

Section on X (between horizontal lines)
Amplitude Ch1 vs X, 23.0 < Y < 28.0 mm

Section on Y (between vertical lines)
Amplitude Ch1 vs Y, 26.0 < X < 33.0 mm

Red points represent the median, excluding events under threshold and saturating the scope scale

- The amplitude is fairly uniform on the APD
- The active area is around 9 mm (from section on X)
Signal Amplitude Projections

APD metallized, 1775 V

Median amplitude Map Ch1, 0.04 < A < 0.35 V

Section on X (between horizontal lines)

Amplitude Ch1 vs X, 23.0 < Y < 28.0 mm

Section on Y (between vertical lines)

Amplitude Ch1 vs Y, 26.0 < X < 33.0 mm

Red points represent the median, excluding events under threshold and saturating the scope scale

- The amplitude is fairly uniform on the APD
- The active area is around 9 mm (from section on X)
Signal Amplitude Projections

APD metallized, 1775 V

Section on X (between horizontal lines)

Median amplitude Map Ch1, 0.04 < A < 0.35 V

Section on Y (between vertical lines)

Amplitude Ch1 vs Y, 26.0 < X < 33.0 mm

The amplitude is fairly uniform on the APD

The active area is around 9 mm (from section on X)

Red points represent the median, excluding events under threshold and saturating the scope scale
20-80% Risetime

APD metallized, mean risetime, 1775 V

Section on X (between horizontal lines)

Distribution using data in the rectangle (all geom. cuts)

Red points represent the mean
Events under threshold or saturating are excluded

- Risetime shows a slight slope along X
- Not observed along Y
- Tails in the distribution are present
- Different risetimes in det. center
20-80% Risetime

APD metallized, mean risetime, 1775 V

Section on X (between horizontal lines)

Distribution using data in the rectangle (all geom. cuts)

Red points represent the mean
Events under threshold or saturating are excluded

- Risetime shows a slight slope along X
- Not observed along Y
- Tails in the distribution are present
- Different risetimes in det. center
20-80% Risetime

Metallized APD, mean risetime, 1775 V

MCP-PMT, mean risetime

The MCP-PMT shows values outside the peak, probably due to few points on leading edge.

M. Centis Vignali

APDs Beam Test

27.11.2018
Time of Arrival APD - MCP-PMT

\[\Delta t \text{ Section on X (between horizontal lines)} \]

\[\Delta t \text{ CFD Ch1 - Ch4 vs plane Ch1 X, y slices and amplitude cuts fulfilled for both Ch} \]

\[\text{Std. Dev of } \Delta t \text{ (not a fit)} \]

\[\text{Red points represent the mean} \]

\[\text{Cut for threshold and saturation} \]

\[\text{All geom. cuts fulfilled by both ch.} \]

- CFD, 2 pt interpolation: APD 0.2, MCP 0.5
- \(\Delta t \) fairly homogeneous on the detector
- There is a region of broader \(\Delta t \) in det. center
- Similar effect as edges of det. as for risetime
Time of Arrival APD - MCP-PMT

Δt Section on X (between horizontal lines)

APD metallized, mean Δt, 1775 V

Red points represent the mean
Cut for threshold and saturation
All geom. cuts fulfilled by both ch.

- CFD, 2 pt interpolation: APD 0.2, MCP 0.5
- Δt fairly homogeneous on the detector
- There is a region of broader Δt in det. center
- Similar effect as edges of det. as for risetime
Time of Arrival APD - MCP-PMT

Mean Δt vs X for one bin $[25.5,26]$ mm

There is a region in det. center with different Δt

- Its std. dev. is similar to the rest of the detector
- Its position corresponds to the hole in the metallization of p-side

M. Centis Vignali

APDs Beam Test
Time of Arrival APD - MCP-PMT

Mean Δt vs X for one bin [25.5,26] mm

Mean Δt (zoomed Z to see effect)

Std Dev Δt vs X for one bin (no fit)

- There is a region in det. center with different Δt
- Its std. dev. is similar to the rest of the detector
- Its position corresponds to the hole in the metallization of p-side
Time of Arrival APD - MCP-PMT

Mean Δt vs X for one bin [25.5,26] mm

- There is a region in det. center with different Δt
- Its std. dev. is similar to the rest of the detector
- Its position corresponds to the hole in the metallization of p-side

Std Dev Δt vs X for one bin (no fit)
Time Resolution of the System

- Time resolution from fit $\sigma_{\Delta t} = 54.9 \pm 1.3$ ps (using an 8×8 mm2 detector)
- Time resolution of the MCP-PMT with the current readout has to be determined
- Excess at ≈ 8 ns due to the non-uniformity at det. center
Time resolution from fit $\sigma_{\Delta t} = 54.9 \pm 1.3$ ps (using an 8×8 mm2 detector)

Time resolution of the MCP-PMT with the current readout has to be determined

Excess at ≈ 8 ns due to the non-uniformity at det. center
Summary

- Acquired data for APDs in beam tests, \(\approx 7 \text{M events} \)
- Both tracking and time references were available
- Preliminary results from analysis of one run

Outlook:
- More runs will be analyzed, the tracking information will soon be available
- Separate the different components of the time resolution
Backup Material
APD Section (Not to Scale)

- p-side
- n-side
- conductive layer
- polyimide

M. Centis Vignali

APDs Beam Test
$2 \times 2 \text{ mm}^2$ DD-APDs

- Packaged
- Usually employed in irradiation studies
Beam Test Setup

- Sensor box placed downstream first tracking GEM
- Detectors and PCBs coated with FSC 400 to reduce discharges
- Amplifiers: CIVIDEC 2 GHz, 40 dB
- Data acquisition: Agilent 2.5 GHz, 10 Gs/s
 - Ch1: APD
 - Ch2: APD
 - Ch3: Telescope bit pattern (Trigger)
 - Ch4: MCP-PMT
- Temperature, bias, and current logged
 - MCP-PMT readout and shaping

![Sensor box](image)

![APD readout](image)
Run Conditions

Voltage log

Temperature log

Current log

- Run went on till ≈ 18.55
- Current increases due to rampling down
- Access at ≈ 19.15 (dip in temperature)
Analysis:

- Extract signal properties (ampli, risetime, tCFD,)
- The signal is selected in a window around the peak
- Points preceding the selection are used for baseline
- The leading edge is isolated to extract risetime and tCFD
- The tracking info is extrapolated to each plane
- Only events with one track are used