Studies of the breakdown in R&D structures of the FBK UFSD3 production

33rd RD50 Workshop, CERN, Geneva, 27th November 2018

Outline

➢ The UFSD3 Production: I(V) curves and Breakdown
➢ Breakdown studies with the TCT Setup
➢ Breakdown studies with a CCD camera
➢ An unwanted effect: Pop-Corn noise
The UFSD3 production

➢ UFSD3: 3rd production of Ultra-Fast Silicon Detectors by Fondazione Bruno Kessler (FBK)
➢ Wide range of strip and pad arrays
➢ 4 solutions for the inactive area between gain layers (pads/strips):
The UFSD3 production

- **UFSD3**: 3rd production of Ultra-Fast Silicon Detectors by Fondazione Bruno Kessler (FBK)
- Wide range of strip and pad arrays
- **4 solutions for the inactive area** between gain layers (pads/strips):
 1) “SUPER-SAFE” - similar to UFSD2

UFSD3 (2018)
The UFSD3 production

- **UFSD3**: 3rd production of Ultra-Fast Silicon Detectors by Fondazione Bruno Kessler (FBK)
- Wide range of strip and pad arrays
- 4 solutions for the inactive area between gain layers (pads/strips):
 1) “SUPER-SAFE” - similar to UFSD2
 2) “AGGRESSIVE”
 3) “MEDIUM”
 4) “SAFE”

R&D structures: Narrower inactive area width than UFSD2
The UFSD3 production

- UFSD3: 3rd production of Ultra-Fast Silicon Detectors by Fondazione Bruno Kessler (FBK)
- Wide range of strip and pad arrays
- 4 solutions for the inactive area between gain layers (pads/strips):
 1) “SUPER-SAFE” - similar to UFSD2
 2) “AGGRESSIVE”
 3) “MEDIUM”
 4) “SAFE”

UFSD3 R&D Structures (in scale)

Width: ~30μm
Width: ~20μm
Width: ~10μm
Largest width: ~40μm
The UFSD3 production

- **UFSD3**: 3rd production of Ultra-Fast Silicon Detectors by Fondazione Bruno Kessler (FBK)
- Wide range of strip and pad arrays
- 4 solutions for the inactive area between gain layers (pads/strips):
 1) “SUPER-SAFE” - similar to UFSD2
 2) “AGGRESSIVE”
 3) “MEDIUM”
 4) “SAFE”

What is the impact of the design of the gain termination area on the sensor properties?
Tested Sensors

- 3 pad sensors (1x3 mm2 pads): “SAFE”, “MEDIUM” and “AGGRESSIVE”
- Strip sensor “SUPER-SAFE” (600 μm pitch)
- Strip sensor “MEDIUM” (300 μm pitch)

→ All devices are pre-irradiation

One of the 2x2 pad sensors tested
Different Breakdowns

- **“SUPER-SAFE”**
 - Breakdown Voltage \(V_{BD} > 300V \)
 - \(I(V) \) exponential
 - Breakdown due to internal gain
 - This is the kind of Breakdown we like

\[I \text{(uA)} \]
\[V \]

~200 - 300V is the voltage range we’d like to operate the sensors
Different Breakdowns

“SUPER-SAFE”

● Breakdown Voltage (V_{BD}) > 300V

● $I(V)$ exponential

➔ Breakdown due to internal gain

➔ This is the kind of Breakdown we like

R&D Structures

● $V_{BD} < 300V$

● $I(V)$ is not an exponential

➔ Early Breakdown, not due to the gain
Hundreds of pads tested → **Same V_{BD} within few volts for all R&D structures**

“**SUPER-SAFE**” design uniform as well (see M. Tornago talk)
Breakdown Voltage vs Width

V_{BD} strongly dependent on the width of the inactive area

This is close to what we want, but not yet ok

Siviero F. “33rd RD50 Workshop”, CERN, November 2018
Inactive Area Studies

- The DUTs Breakdown (BD) strongly depends on:
 - Design of the inactive area
 - Inactive area width
Inactive Area Studies

- The DUTs Breakdown (BD) strongly depends on:
 - Design of the inactive area
 - Inactive area width

Two main tools to perform this study:
1. Mapping of the sensors using the Transient Current Technique (TCT) Setup
2. Observation of the sensors hot spots with a CCD camera

Measurements performed in Torino Silicon Lab (University of Torino - INFN)
TCT

TCT Setup in Torino

Particulars TCT setup:
Particulars TCT setup:
- IR pulsed laser (1060 nm) → 10-15 μm spot
- xy-stage with sub-μm precision
- Stage control and DAQ via Labview software
Particulars TCT setup:
- IR pulsed laser (1060 nm) → 10-15 μm spot
- xy-stage with sub-μm precision
- Stage control and DAQ via Labview software
- **Automatic xy-scan + Small laser spot:**
 → Very precise mapping of the DUT
A preliminary measurement: Interpad

- We measured the inactive area width* of the tested sensors with the TCT

* Inactive area width = Interpad (Interstrip) width
A preliminary measurement: Interpad

- We measured the inactive area width of the tested sensors with the TCT
- **Get the width** by scanning two nearby pads (strips) → charge vs position

![Diagram](width_diagram.png)
A preliminary measurement: Interpad

- We measured the inactive area width of the tested sensors with the TCT
- **Get the width** by scanning two nearby pads (strips) → charge vs position

Result with a point-like spot → our spot is 10-15 μm with a gaussian shape
A preliminary measurement: Interpad

- We measured the inactive area width of the tested sensors with the TCT
- Get the width by scanning two nearby pads (strips) → charge vs position

Result with a point-like spot → our spot is 10-15 μm with a gaussian shape
→ The real profile is a convolution of the step function with a gaussian (= s-curve)
A preliminary measurement: Interpad

- We measured the inactive area width of the tested sensors with the TCT
- **Get the width** by scanning two nearby pads (strips) → charge vs position

![Diagram showing charge vs position with a Gaussian laser and an s-curve]

Result with a point-like spot → our spot is 10-15 μm with a gaussian shape
→ The **real profile** is a convolution of the step function with a gaussian (= **s-curve**
Interpad Measurement: “Medium”

Intermediate Interpad Distance

Measured width
Interpad Summary

<table>
<thead>
<tr>
<th>Structure</th>
<th>Measured distance (µm)</th>
<th>Laser spot (µm)</th>
<th>Nominal distance (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGGRESSIVE</td>
<td>16.4</td>
<td>7.7</td>
<td>11</td>
</tr>
<tr>
<td>INTERMEDIATE</td>
<td>16.7</td>
<td>10.1</td>
<td>20.5</td>
</tr>
<tr>
<td>SAFE</td>
<td>30.4</td>
<td>10.0</td>
<td>31</td>
</tr>
<tr>
<td>SUPER SAFE</td>
<td>38.3</td>
<td>13.4</td>
<td>41</td>
</tr>
</tbody>
</table>

UFSD2 Interpad width: ~ 60µm
TCT: Mapping a 2x2 sensor

2x2 SAFE @200V

2D Map of the collected charge
- 4 pads read out
- Collected charge = Sum of the charges collected by 4 pads

Siviero F. “33rd RD50 Workshop”, CERN, November 2018
TCT: Mapping a 2x2 sensor

2D Map of the collected charge
- 4 pads read out
- Collected charge = Sum of the charges collected by 4 pads

Pads metallized on the front
→ Signal only in the inactive area

Inactive area, no front metallization
TCT: Mapping a 2×2 sensor

2D Map of the collected charge

- 4 pads read out
- Collected charge = Sum of the charges collected by 4 pads

Pads metallized on the front
→ Signal only in the inactive area

Let’s now consider only the charge collected by Pad 1
TCT: Charge vs Bias

- Charge collected by Pad 1 at 3 different voltages
- \(V_{BD} \sim 250 \text{V} \)
- Coloured scale is different from the previous slide
TCT: Charge vs Bias

- The collected charge should be constant (inactive area = no gain)
TCT: Charge vs Bias

- The collected charge should be constant (inactive area = no gain)
- Instead, the charge increases with the bias → strong indication of charge multiplication in that region (gain)

![Graphs showing charge vs. bias at different voltages](image-url)
Consider the X-projection for a fixed y (Black line)
Consider the X-projection for a fixed y (Black line)

- Clear dependence of the collected charge on V_{BIAS} → Gain shows up near BD
- Effect more evident in the corners
“MEDIUM” & “AGGRESSIVE”

- **Gain** present near BD in “MEDIUM” and “AGGRESSIVE” as well
 - Present both in pad and strip sensors

MEDIUM strip

MEDIUM strip: Y-projection

Y-projection at fixed x

270 V
200 V
250 V

Siviero F. “33rd RD50 Workshop”, CERN, November 2018
“MEDIUM” & “AGGRESSIVE”

- **Gain** present near BD in “MEDIUM” and “AGGRESSIVE” as well
 - Present both in pad and strip sensors

What about the “SUPER-SAFE” sensor? (Which has a different design of the inactive area)
TCT: mapping the “SUPER-SAFE” strip

- “SUPER-SAFE” strip @300V
- Metallization on the front

SUPER-SAFE Strip @300V

Metal (no signal)

Inactive Area
TCT: Charge vs Bias

- Charge collected by the strip at 3 different voltages
- \(V_{BD} \approx 320 \text{V} \)
- Coloured scale is different from the previous slide
Y-Projections

Consider the Y-projection for a fixed x (Black line)

No dependence on the bias voltage → no gain in the inactive area for the “SUPER-SAFE” design, no sign of early BD
Y-Projections

Consider the Y-projection for a fixed x (Black line)

SUPER-SAFE strip: Y-projection

Now we repeat the measurements with a CCD camera

➢ No dependence on the bias voltage → no gain in the inactive area for the “SUPER-SAFE” design
Hamamatsu C11090-22B

- EM-CCD Camera working with visible light
- 1024 x 1024 pixels
- Ultra-Low light Imaging:
 - Able to detect the hot spots* of the DUT when it is in BD

* Gain = high current densities
 → emit visible photons
 → Hot Spot
Hamamatsu C11090-22B

- The camera is mounted on a probe station
- 2 pictures of the sensor are taken:
 - A conventional picture taken with an external source of light
 - A picture taken in complete darkness (probe station closed) with the DUT in BD
- The 2 pictures are then overlapped to show in which area the hot spots come out

We focused on the corners of the inactive area
2x2 “SAFE”: The Hot Spots

- 2x2 SAFE @200V
- No Hot Spots
2x2 “SAFE”: The Hot Spots

Breakdown: Hot Spots in the curved regions!
2x2 “SAFE”: The Hot Spots

Breakdown: Hot Spots in the curved regions!

Same hot spots in “MEDIUM” & “AGGRESSIVE”
“SUPER-SAFE” strip: No Hot Spots
“SUPER-SAFE” strip: No Hot Spots

300 V

320 V

330 V

No hot spots observed
Summary on Breakdown

- **R&D Structures**: Breakdown occurs in the inactive region due to the **high electric field** between JTE and p-stop
- **Weakest spot** identified in the **corners** of the pad
- Narrower inactive area → earlier V_{BD} (since JTE and p-stop are closer)

- **“SUPER-SAFE”: different design** of the inactive area → higher V_{BD}
 → Gain avalanche in the pad happens before breakdown in corners
Pop-Corn Noise

An undesired effect related to the new inactive area design:

- **Pop-Corn Noise**: micro-discharges (spikes) that appear at a certain voltage
 - the sensor can still be operated, but the noise worsens a lot
- Already observed in the previous **UFSD2** but always **few Volts before BD**
 → Not an issue in **UFSD2**, it is just an indication that BD is going to start
- Several **UFSD3** sensors show Pop-Corn at voltages **much lower than V_{BD}**
 → Important issue, we cannot operate the sensors at the appropriate voltage
Pop-Corn Noise

An undesired effect related to the new inactive area design:

- **Pop-Corn Noise**: micro-discharges (spikes) that appear at a certain voltage
 - the sensor can still be operated, but the noise worsens a lot
- Already observed in the previous UFSD2 but always **few Volts before BD** → **Not an issue**, it is just an indication that BD is going to start
- Several UFSD3 sensors show Pop-Corn at voltages **much lower than \(V_{BD} \)** → **Important issue**, we cannot operate them at the appropriate voltage

- Example of **Pop-Corn (Yellow)**
- Pink is “normal” noise of another device of the same type, shown for comparison

Taken 100V before \(V_{BD} \)
The electrons under the oxide create an “inversion layer”, acting as n-doped Silicon: this layer with the p-stop creates a p-n junction.

- The more doped is the p-stop, the shorter is the p-n junction, and the higher is the electric field.
- According to literature: pop-corn noise is generated when this p-n junction is too sharp.
UFSD3 Pop-Corn

- UFSD3 has been produced using the “stepper” technique instead of the “mask aligner” technique.
- The stepper is able to create much sharper images, much better defined edges, higher uniformity and process speed.
- Unforeseen consequence on the p-stop: much sharper images → much sharper pn junction → Pop-Corn noise
- We believe that the Pop-Corn noise is due to: use of the stepper + p-stop too doped
UFSD3 Pop-Corn

● UFSD3 has been produced using the “stepper” technique instead of the “mask aligner” technique.
● The stepper is able to create much sharper images, much better defined edges, higher uniformity and process speed
● Unforeseen consequence on the p-stop: much sharper images → much sharper pn junction → Pop-Corn noise
● We believe that the Pop-Corn noise is due to: use of the stepper + p-stop too doped

→ A possible fix to this issue: use a less-doped p-stop, in order to get a less sharp pn junction

Siviero F. “33rd RD50 Workshop”, CERN, November 2018
Summary & Conclusions

- UFSD3 has 2 designs of the inactive area:
 - UFSD2 like “SUPER-SAFE”: BD due to internal gain → the sensor can be operated at the proper voltage (~ 300V)
 - 3 R&D structure: BD due to high gain in the inactive area → sensor cannot reach 300V
- The inactive area design determine the type of BD and therefore the voltage that can be reached → Key point for future productions
- Pop-Corn Noise: micro-discharges that appear much before BD → Likely due to the “stepper” technique + highly doped p-stop
Thank You!
Acknowledgements

We kindly acknowledge the following funding agencies and collaborations:

➢ INFN Gruppo V
➢ Horizon 2020, ERC - Advanced Grant UFSD
➢ Horizon 2020, MSCA - INFRAIA Grant AIDA2020
➢ Ministero degli Affari Esteri, Italia, MAE, “Progetti di Grande Rilevanza Scientifica”
Backup
I(V) Curves

I(V) curves of the 5 sensors tested

Siviero F. “33rd RD50 Workshop”, CERN, November 2018
Strip Breakdown

V_{BD} is strongly dependent on the width of the inactive area

Siviero F. “33rd RD50 Workshop”, CERN, November 2018
Interpad: SAFE & SUPER-SAFE

Safe 1 Interpad Distance

Safe 2 Interpad Distance

Siviero F. "33rd RD50 Workshop", CERN, November 2018
Interpad Summary

<table>
<thead>
<tr>
<th>Structure</th>
<th>Measured distance (µm)</th>
<th>Laser spot (µm)</th>
<th>Nominal distance (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGGRESSIVE</td>
<td>16.4</td>
<td>7.7</td>
<td>11</td>
</tr>
<tr>
<td>INTERMEDIATE</td>
<td>16.7</td>
<td>10.1</td>
<td>20.5</td>
</tr>
<tr>
<td>SAFE</td>
<td>30.4</td>
<td>10.0</td>
<td>31</td>
</tr>
<tr>
<td>SUPER SAFE</td>
<td>38.3</td>
<td>13.4</td>
<td>41</td>
</tr>
</tbody>
</table>

Larger discrepancy if the width is narrow because of the laser spot.
“AGGRESSIVE” Hot Spots

90 V
100 V
110 V
“MEDIUM” Hot Spots

Siviero F. “33rd RD50 Workshop”, CERN, November 2018
Figure 6: Section from T-CAD simulation of the V2 sample with a high p-stop doping concentration. The simulation was performed for $T = 253$ K and $V_{bias} = -600$ V. The asymmetry between the p-stops is due to the chosen mesh density.

Figure 7: Maximum electric field strength distribution between two strips as a result from T-CAD simulations. The parameters correspond to the values listed in Figure 6. (The asymmetry between the p-stops is due to the choice of the mesh parameter.)

Martin Printz, KiT