

Annealing and Characterization of Low Gain Avalanche Detectors

Moritz Wiehe^{1,2} M. Fernández García^{1,3}, M.Moll¹, S. Otero Ugobono^{1,4}, U. Parzefall², A. Ventura Barroso

¹CERN
² Albert-Ludwigs Universität Freiburg
³ Universidad de Cantabria
⁴ Universidad de Santiago de Compostela

33rd RD50 workshop, CERN November 2018

- Introduction:
 - Samples, setup and previous studies
- Gain after annealing
- Onset voltage for IV and TCT measurements
- E-Field profile after annealing
- Conclusions

IR edge-TCT

electron signal

edge TCT -- PIN unirradiated

 $U_{bias} = 100V$, -20°C

hole signal

8

6

10

Time [ns]

12

11/26/18

Moritz Wiehe - 33rd RD50, CERN Nov. 2018

Low Gain Avalanche Detectors

Radiation Effects

Acceptor Removal

- yet to be fully understood
- believed to be originating from dislocated acceptors (boron) forming complex states with oxygen (B_iO_i)
- \rightarrow boron electrically deactivated
- $\rightarrow N_{eff}$ decreases

Deterioration of Electric Field

- trapping of charge carriers in bulk material alters electrical properties
- can lead to space charge sign inversion
- creating apparent junction at the back side of the detector

S. Otero Ugobono

Previous Studies

Gregor Kramberger, 2015:

Radiation effects in Low Gain Avalanche Detectors after hadron irradiations

Acceptor removal in p+ layer

- decreasing onset voltage (V_{mr})
- no temperature dependence

Charge

Sofía Otero Ugobono, 2018:

Characterisation and Optimisation of Radiation-Tolerant Silicon Sensors with Intrinsic Gain

samples annealed at 60° C for 80min before characterization

TCT+ setup at CERN

- Samples glued to PCB for electrical connection

- Peltier-based cooling system (~ -25°C)
- Temperature sensor attached to PCB
- 3D stage system to align laser and sample

Two laser heads:

- $\frac{\text{Red}}{\lambda}$ (top and bottom measurements) λ =660nm
- Infrared (edge + top/bottom) λ =1064nm

LabView based DAQ and control

CERN – SSD TCT+ (B186)

Christian Gallrapp, "The TCT+ setup - a system for TCT, eTCT and timing measurements", 1st TCT Workshop DESY

LGAD Annealing Study - Samples

Two LGADs from CNM Run 8622, Wafer 5
 'E3_1', 'I3_1'

Amplification layer: 'medium dose'

• PIN diode, Run 8622, Wafer 5

'E3_4'

no amplification layer, otherwise identical

• all samples:

Thickness: 285µm, active area 3x3mm²

24 GeV/c - proton irradiated with $10^{14} n_{eq}/cm^2$ at CERN IRRAD facility

high resistivity p-FZ wafers

• annealing steps at 60°C: 80, 240, 560, 1200, 2480, 5040 ... minutes

CERN

Red Front TCT

all samples:

- Red Front TCT measurements at -20°C and +20°C
- all measurements normalized by the laser power

devices are biased from the backside signal read-out at the top guard ring grounded

$$Gain = Q_{25ns}^{LGAD} / Q_{25ns}^{PIN}$$

Stable gain after irradiation → Annealing does not affect the gain layer

Note: Impact ionization coefficient is temperature dependent

 \rightarrow higher gain for -20°C before and after irradiation

11/26/18

 $Q_{25ns}(U_{bias}) = \sqrt{U_{bias} - U_{onset}}$

Decrease of leakage current with annealing as expected
 'Kink' visible for LGADs at ~ 26V, independent of annealing time!

all samples: $10^{14} n_{eq} / cm^2$

11/26/18

Annealing of LGADs - Conclusion

Sensors functional after irradiation with $10^{14} n_{eq}^{2}/cm^{2}$ (24 GeV/c protons) No recovery of (type-1) gain after annealing

Complex annealing behavior observed

Double junction at short annealing times

 \rightarrow Charge collection - onset voltage increased to ~ 50V due to change in E-Field

IV – onset voltage stable at ~26V independent of annealing time

Deterioration of gain layer with irradiation

- \rightarrow Reduced gain
- \rightarrow Depletion of gain layer already at 26V (~33V before irradiation)
- \rightarrow Gain layer is not affected by annealing (see IV + gain)

Onset voltage measured by TCT is not directly related to the depletion of the amplification layer

S. Otero Ugobono

Onset voltage measured at 200-300V for $10^{14}n_{eq}^{2}/cm^{2}$

BUR

 $10^{14} n_{eq} / cm^2$

Capacitance - CV

'Kink' visible at same voltage as in IV measurement
depletion voltage increasing with annealing

RF TCT - 50ns

