

Novel view on extraction of charge carrier transport parameters from the data of classical TCT

<u>A. Shepelev</u>, V. Eremin. E. Verbitskaya Ioffe Institute, St. Petersburg, Russia

33rd RD50 Collaboration Workshop CERN, Geneva, Nov 26-28, 2018

Motivation

TCT is the unique method for investigation of electric field distribution in *heavily irradiated p-i-n* structures

TCT goal: $i(t) \rightarrow E(x), N_{eff}(x)$

Ramo's theorem:

 $i(t) = E_w Q(t) v_{dr}(t)$

There are some **problems**: Pulse shape is determined by a combination of a several factors:

- $E(x), \mu(E(x)) \rightarrow v_{dr} = E(x(t)) \times \mu[E(x(t))]$ • Drift velocity is a function of a several variables
- The charge of drifting carriers is not constant in time ٠ Q = Q(t)

Due to the carrier trapping on deep levels (τ_{tr})

Pulse edges distortions ٠

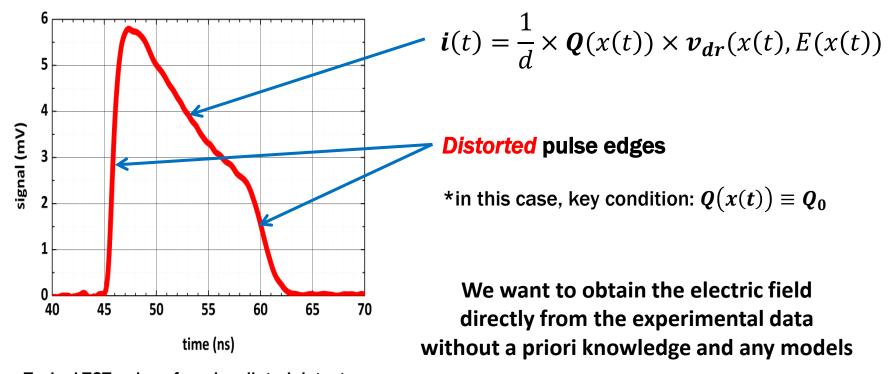
> Due to the nonuniformity of generated cloud of carriers, diffusion and response of the electric circuit

Outline

- Motivation
- Reconstruction of the physical response
- TCT Signal processing
- Numerical solution of the system of equations for the electric field
- Electric field reconstruction in nonirradiated detectors
- Electric field reconstruction in irradiated detectors

Summary

TCT Pulse



Typical TCT pulse of nonirradiated detector Current induced by electron drift

Main equations for Electric field reconstruction

The lateral size of the detector's contacts is much bigger than thickness of sensitive area: **1D geometry**

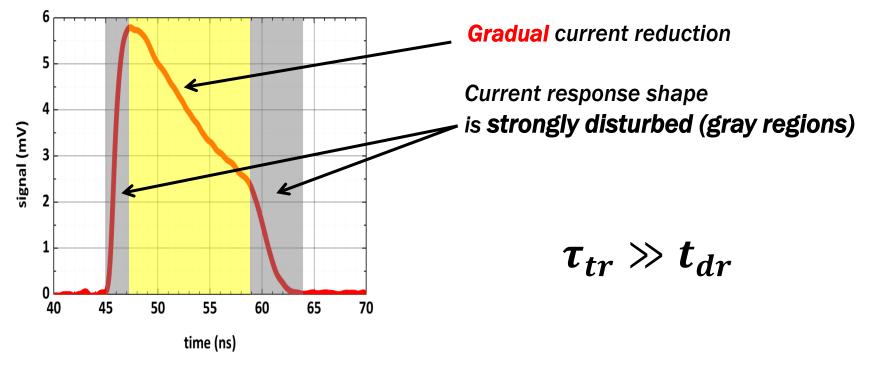
Current response	Drift velocity
$i(t) = rac{Q(t)}{d} v_{dr}(t)$	$v_{dr}(t) = \mu(E(t))E(t)$
Mobility	Translation to coordinate scale
$\mu_{eff}(E) = \frac{\partial v_{dr}(E)}{\partial E}$	$x(t) = \int_0^t v_{dr}(t')dt'$

Collected charge $Q_0 = \int_0^{t_{dr}} i(t) dt$ $\tau_{tr} \gg t_{dr}$ only! Potential difference $\Delta \varphi = \int_0^d E(x) dx = V_{bias}$ Always!

All we need is solve this system...but how?

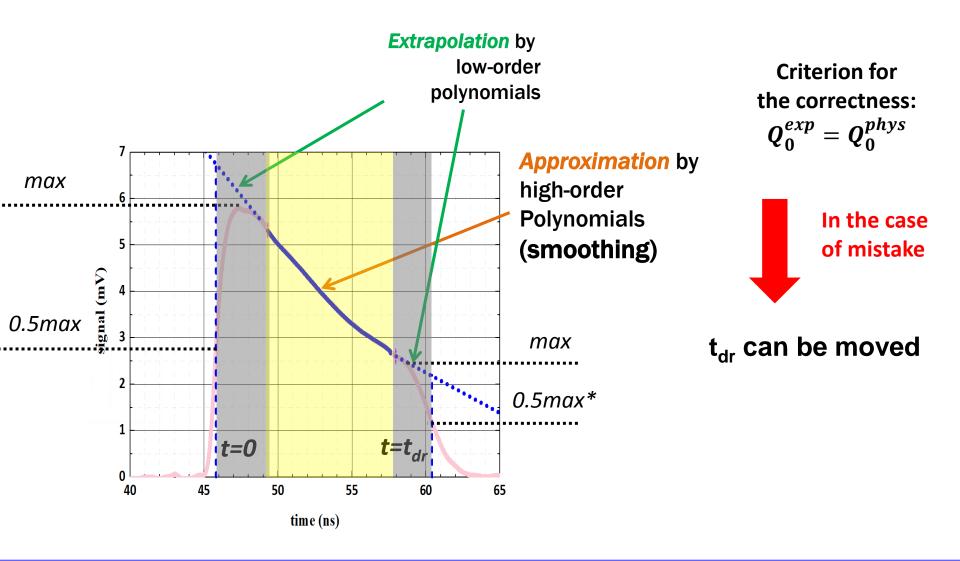
Simple criteria

Reconstruction of the E(x) in the assumption of negligible carrier trapping

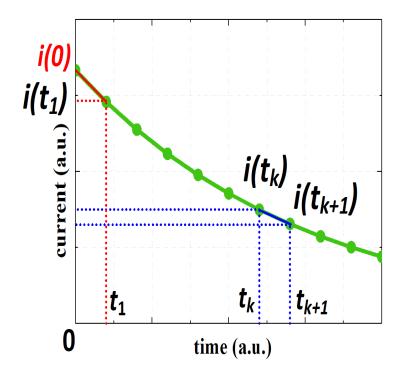


Current pulse response of the full-depleted detector

Data processing: reconstruction of physical response



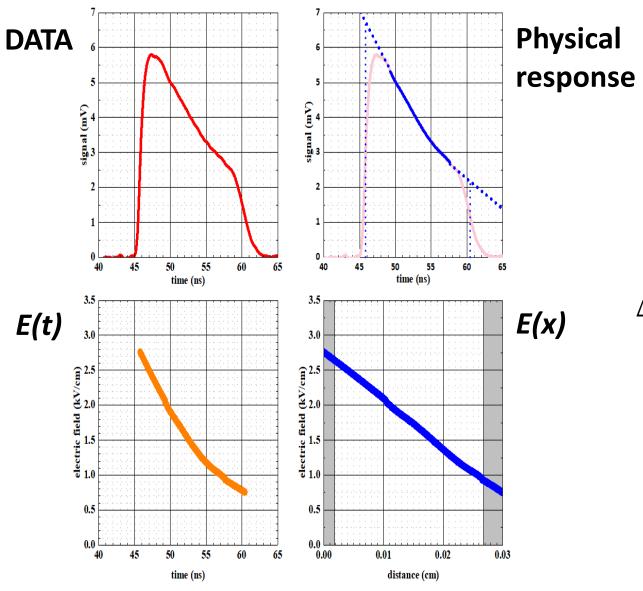
We have the physical response, what's next?



 $\boldsymbol{E(0)} = \frac{d}{\boldsymbol{O}_0 \times \boldsymbol{\mu}} \times \boldsymbol{i}(0)$ Initial condition $E_{k+1} = \frac{d}{Q_0} [i(t_{k+1}) - i(t_k)] \mu_{eff}(E_k) + E_k,$ k = 0 N - 1, $t_N = t_{dr}.$ $x_k(t_k) = \int_0^{t_k} v_{dr}(t) dt,$

Approach to the reconstruction of the *E*(*x*) profile

Reconstruction of E(x)



Correctness test:

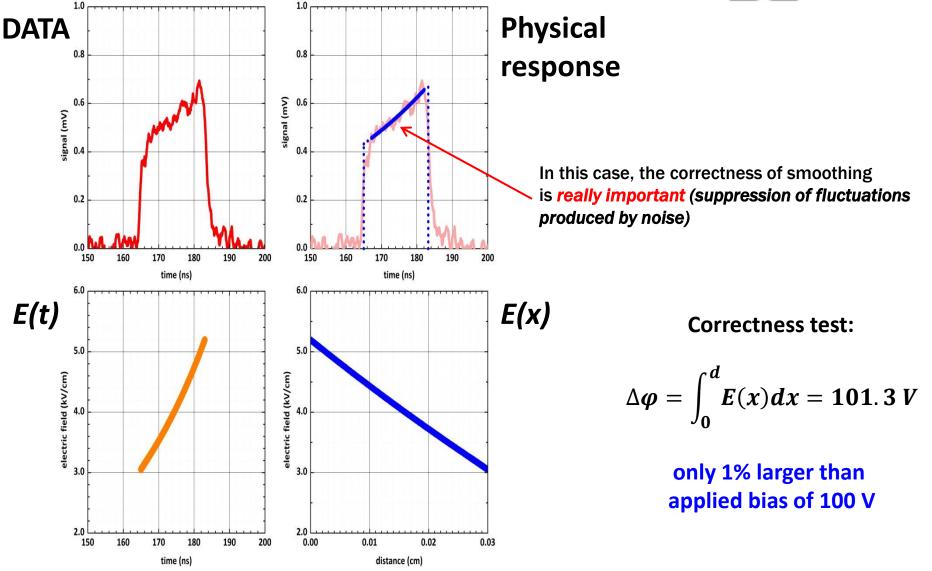
$$\Delta \varphi = \int_0^d E(x) dx = 52.2 V$$

only 4% larger than applied bias of 50 V

A. Shepelev

33rd RD50 Workshop

Hole current response



A. Shepelev

33rd RD50 Workshop

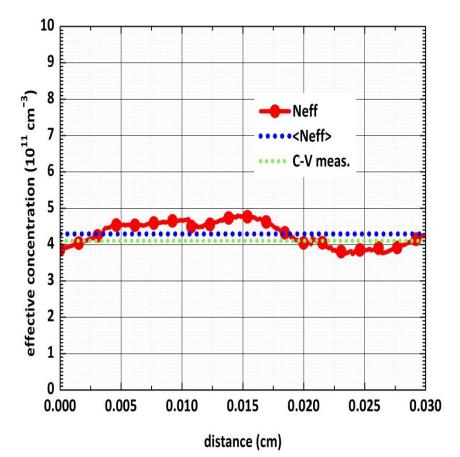
Effective concentration

Poisson's eq. $E(x) \longrightarrow N_{eff}(x)$

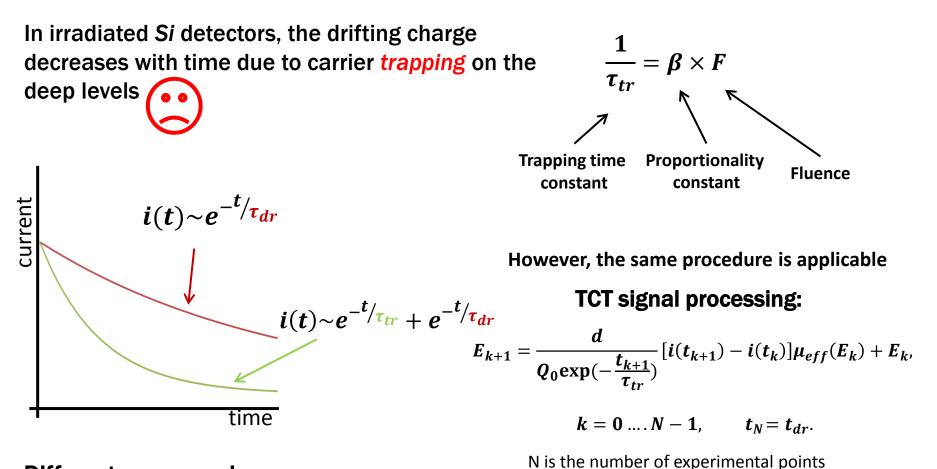
Method	Electron current response	Hole current response	C-V
N _{eff} (10 ¹¹ см ⁻³)	4.3	4.0	4.1

Accuracy: $\sigma = 5\%!$

The profile of the effective concentration is close to uniform

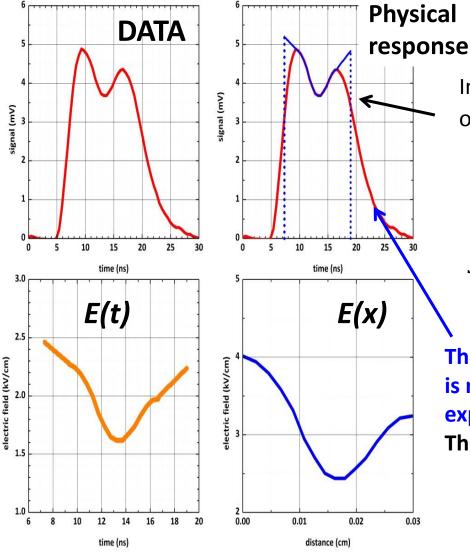


Carrier trapping



Different processes have a similar effect on the pulse shape !

The same steps to the E(x) reconstruction



In this case, we can't use a criterion of Q_0 and only $\Delta \phi$ isn't affected by charge trapping!

$$d = \int_{0}^{t_{dr}} v_{dr}(t) dt$$

$$F_{0}^{\int_{0}^{t_{dr}} v_{dr}(t) dt} = E(x) dx = 80 V \rightarrow t_{dr} = 12 ns!$$

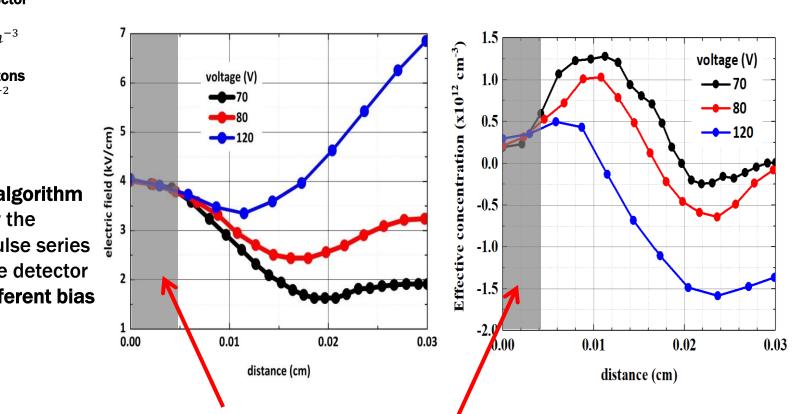
t_{dr} is not on the level of half-amplitude!

The long tail in the response is not connected with the carrier drift and can be explained by the fast trapping/detrapping. The criterion of potential difference shows it!

A. Shepelev

Irradiated Si detector

Effective concentration



Area of uncertainty (area of extrapolation)

 $\mathbf{p}^+/\mathbf{n}/\mathbf{n}^+$ pad detector $d = 300 \ \mu m$ $N_D = 5 \times 10^{11} cm^{-3}$

Irradiated by protons $F = 4 \times 10^{14} cm^{-2}$

The described **algorithm** was applied for the treatment of pulse series recorded for the detector operated at different bias voltages

A. Shepelev

33rd RD50 Workshop

Electric field

Summary

- The new approach is proposed for obtaining the E(x) and $N_{eff}(x)$ from TCT data. It based on the reconstruction of physical response and numerical solution of the system of transport equations.
- In the case of nonirradiated detector, E(x) and N_{eff}(x) were obtained. They are close to uniform and their mean values equal with 5% accuracy to the results of the C-V measurements.
- The described algorithm was applied to responses of irradiated detectors. In this case, temporal resolution and pulse approximation is critical.

Thank you for attention!