

Mixed Irradiations: Order Dependent?

Jan-Ole Gosewisch for the ETP Detector Group | November, 2018

Institut für Experimentelle Teilchenphysik (ETP)

Introduction

- Strip sensors and diodes irradiated with a total fluence of $\Phi \approx 6 \times 10^{14} n_{eq} \text{ cm}^{-2}$
- Material (n-type):
 - diffusion oxygenated float zone (DOFZ), magnetic Czochralski (MCZ) and float zone (FZ) – From RD50's NitroStrip project (as in previous talk)
- Irradiation procedure for each material set:
 - 2 sensors and 1 diode irradiated with Φ ≈ 3 x 10¹⁴ n_{eq} cm⁻² protons first and Φ ≈ 3 x 10¹⁴ n_{eq} cm⁻² neutrons afterwards (p+n)
 - 2 sensors and 1 diode irradiated with Φ ≈ 3 x 10¹⁴ n_{eq} cm⁻² neutrons first and Φ ≈ 3 x 10¹⁴ n_{eq} cm⁻² protons afterwards (n+p)
- Measurements:
 - After first irradiation: CV characteristics (-20°C, 455Hz, guard ring floating)
 - After the second irradiation: CV and signal (ALiBaVa with ⁹⁰Sr source)
 - Annealing study: Seed signal

Irradiation and Annealing

- Proton irradiation:
 - At ZAG (Karlsruhe) with 23 MeV (hardness factor of 2)
 - Samples are cooled down (to roughly -30°C) while irradiating
 - Measurement of the fluence with a Ni-foil (±15%)
 - → First irradiation with protons $\Phi = 2.7 \times 10^{14} n_{eq} \text{ cm}^{-2}$
 - → Second irradiation with protons $\Phi = 2.9 \times 10^{14} n_{eq} \text{ cm}^{-2}$
- Neutron irradiation:
 - At Ljubljana inside a spallation reactor
 - Samples are not cooled inside the reactor (roughly 20h annealing)
 - Real fluences
 - → First irradiation with neutrons $\Phi = 3 \times 10^{14} n_{eq} \text{ cm}^{-2}$
 - → Second irradiation with neutrons Φ = 3.3 x 10¹⁴ n_{eq} cm⁻²
- All equivalent fluence same ($\Phi = 3 \times 10^{14} n_{eq} \text{ cm}^{-2}$) within 10%

CV Characteristics of MCZ Strip Sensors

■ p → p+n

- First $\Phi = 2.7 \times 10^{14} n_{eq} \text{ cm}^{-2} \text{ protons}$
- Then $\Phi = 3.3 \times 10^{14} \text{ n}_{eq} \text{ cm}^{-2} \text{ neutrons (p+n)}$
 - → Depletion voltage increased (expected)

∎ n → n+p

- First $\Phi = 3 \times 10^{14} n_{eq} \text{ cm}^{-2}$ neutrons
- Then $\Phi = 2.9 \times 10^{14} n_{eq} \text{ cm}^{-2} \text{ protons (n+p)}$

→ Depletion voltage unchanged/reduced!

CV Characteristics of FZ Strip Sensors

■ p → p+n

- First $\Phi = 2.7 \times 10^{14} n_{eq} \text{ cm}^{-2} \text{ protons}$
- Then $\Phi = 3.3 \times 10^{14} \text{ n}_{eq} \text{ cm}^{-2} \text{ neutrons (p+n)}$
 - → Depletion voltage increased (expected)

∎ n → n+p

- First $\Phi = 3 \times 10^{14} n_{eq} \text{ cm}^{-2}$ neutrons
- Then $\Phi = 2.9 \times 10^{14} \text{ n}_{eq} \text{ cm}^{-2} \text{ protons (n+p)}$

→ Depletion voltage unchanged/reduced!

CV Characteristics of Diodes

■ p → p+n

- First $\Phi = 2.7 \times 10^{14} n_{eq} \text{ cm}^{-2} \text{ protons}$
- Then $\Phi = 3.3 \times 10^{14} \text{ n}_{eq} \text{ cm}^{-2} \text{ neutrons (p+n)}$
 - → Depletion voltage increased (expected)

∎ n → n+p

- First $\Phi = 3 \times 10^{14} n_{eq} \text{ cm}^{-2}$ neutrons
- Then $\Phi = 2.9 \times 10^{14} n_{eq} \text{ cm}^{-2} \text{ protons (n+p)}$

→ Depletion voltage unchanged/reduced!

Short Discussion – Frame Conditions

Result till now:

The irradiation sequence **n+p** leads to a **lower depletion voltage** than **p+n** (all materials)

Annealing:

- Irradiation procedure protons + neutrons (p+n)
 - First proton irradiation → sensors are cooled down to -30°C
 - Then shipped to Ljubljana \rightarrow uncontrolled annealing possible + annealing inside reactor
 - Shipped back \rightarrow uncontrolled annealing could take place again
- Irradiation procedure for neutrons + protons (n+p)
 - First neutron irradiation (temperature during shipment uncritical)
 - Annealing inside the reactor similar to p+n
 - Shipment back to KIT \rightarrow same annealing time as for p+n (all sensors in the same package)
 - Irradiation with protons → should be cooled down to -30°C
- Preliminary conclusion: Less depletion voltage (for n+p) due to annealing is only possible if sensors

were not cooled down while irradiating with protons!

Karlsruher Institut für Technologie

Signal measurements with an ALiBaVa setup

Daughterboard inside a shielded box

- 1 Connection to motherboard
- 2 Beetle chip for readout
- 3 Pitch adapter
- 4 Radioactive source holder
- Copper block temperature controlled via peltier elements (-20°C to 80°C)
- Scintillator below the copper block to trigger the readout
- Measurement procedure
 - Pedestal run to measure the noise
 - Calibration run to calibrate the gain
 - Radioactive source run to measure the generated signal

Seed Signal vs Cluster Signal

- Charged particle traversing a sensor generates signal in a set of strips (cluster)
 - Seed signal: signal of the strip with the most signal (SNR \geq 4)
 - Cluster signal: seed signal + signal of neighbouring strips (SNR \geq 2)

Main difference between cluster and seed signal is an offset

→ Comparison of both signal definitions for a proton irradiated MCZ strip sensor

Seed Signal before Annealing

Voltage dependence of the signal (MCZ)

- Sensors irradiated with n+p show a significantly higher signal for all bias voltages above 300V
- Consistent with the CV characteristics
 - → Lower depletion voltage for n+p

- One sensor with **n+p** clearly above the others
- FZ5 similar signal to p+n for low voltages but higher signal at higher voltages(?)
- Others consistent with CV characteristics
 - \rightarrow Lower depletion voltage for n+p

Annealing Characteristics

- Annealing behaviour at 800V (MCZ)
 - Dependent on the irradiation sequence!
 - \rightarrow Excludes annealing as an explanation for the
 - differences after n+p and p+n irradiation

Annealing behaviour at 800V (FZ)

- Independent of the irradiation sequence
- Before annealing: higher signal of n+p
 - \rightarrow Fast vanishing of the difference
- Oxygen concentration
 - MCZ: $4.6 \cdot 10^{17} \text{ cm}^{-3}$
 - FZ: $< 9 \cdot 10^{15} \text{ cm}^{-3}$

Conclusions

- Investigation of CV characteristics and signal dependent on the irradiation sequence
- The irradiation sequence n+p results in a lower depletion voltage than for p+n irradiated samples for all investigated materials (MCZ, FZ, DOFZ)
- In agreement with this lower depletion voltage, the signal is higher (before annealing)
- The signal difference vanishes rapidly (after some days annealing time) due to strong beneficial annealing of the p+n irradiated sensors
 - \rightarrow The signal annealing behaviour is similar for both irradiation sequences and FZ material
- It is ambiguous if this is also the case for DOFZ material
- Contrary, the irradiation sequence was crucial for the annealing behaviour of MCZ material
 - \rightarrow n+p irradiated samples showed significantly less reverse annealing
 - \rightarrow Finally excludes annealing as a possible explanation
- Similar effects were also observed for p-type material
 - \rightarrow But no full comparable data set (CVs of **n**+**p** irradiated sensors)

Backup

Signal Annealing of MCZ Material

Signal Annealing of MCZ Material

HPK Material – CV and IV Characteristics

Signal over Fluence of n-type Sensors

From 2017 JINST 12 P06018

IV Characteristics n+p vs p+n

After the total fluence of $\Phi \approx 6e14 \text{ n}_{eq} \text{ cm}^{-2}$

- Neutron after proton irradiation (p+n)
 - → More leakage current
- Proton after neutron irradiation (n+p)
 - → Less leakage current

Signal after Irradiation – FZ and DOFZ 600V

Annealing behaviour of the seed signal (FZ)

- Independent of the irradiation sequence
- Before annealing: higher signal of n+p
 - → Consistent with CV measurements

- Dependent on the irradiation sequence?
- Before annealing: higher signal of n+p
 - → Consistent with CV measurements

Signal after Irradiation – MCZ 600V

- Annealing behaviour of the seed signal (MCZ) at 600V
 - Still stronger reverse annealing of the **p+n** irradiated material

Voltage Dependence after Annealing

\rightarrow Leakage current increased (expected)

First proton then neutron irradiation (p+n)

Left side:

IV Characteristics of DOFZ Material

Right side:

- First neutron then proton irradiation (n+p)
 - \rightarrow Leakage current unchanged!

Left side:

- First proton then neutron irradiation (p+n)
 - → Leakage current increased (expected)

IV Characteristics of MCZ Material

Right side:

- First neutron then proton irradiation (n+p)
 - → Leakage current unchanged/reduced!

IV Characteristics of FZ Material

Left side:

- First proton then neutron irradiation (p+n)
 - → Leakage current increased (expected)

Right side:

- First neutron then proton irradiation (n+p)
 - → Leakage current unchanged/reduced!

DOFZ8 Protons

CV Characteristics of DOFZ Material

 $p \rightarrow p+n$

- First Φ = 2.7 x 10¹⁴ n_{eq} cm⁻² protons
- Then $\Phi = 3.3 \times 10^{14} n_{eq} \text{ cm}^{-2}$ neutrons (p+n)
 - → Depletion voltage increased (expected)

$n \rightarrow n+p$

- First $\Phi = 3 \times 10^{14} n_{eq} \text{ cm}^{-2}$ neutrons
- Then Φ = 2.9 x 10¹⁴ n_{eq} cm⁻² protons (n+p)

 \rightarrow Depletion voltage unchanged/reduced!

