Measurement of $E_{\rm eff}$ for Irradiated and Annealed Diodes

Felix Wizemann felix.wizemann@tu-dortmund.de

Technische Universität Dortmund

33rd RD50 Workshop November 26, 2018

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

sche universität

Temperature scaling

Power dissipation: important factor for highly irradiated silicon sensorsLeakage current is dependent on temperature:

$$I(T) = A \cdot T^2 \exp\left(\frac{E_{\rm eff}}{2 \cdot kT}\right)$$

- E_{eff} is the effective band gap (literature value: $E_{\text{eff}} = 1.21 \text{ eV}^1$)
- Prediction of power dissipation for different temperatures requires scaling

¹A. Chilingarov, https://doi.org/10.1088/1748-0221/8/10/p10003

F. Wizemann (TU Dortmund)

Temperature scaling

26.11.2018

2 / 15

Temperature scaling

- Temperature scaling model assumes depleted bulk →Validity for highly irradiated sensors? →Dependent on applied voltage?
- Affected by annealing due to change in defects?

Samples

Diode	Irradiation	Fluence	Annealing Range
	Facility	$n_{ m eq}/ m cm^2$	min at 60 $^\circ C$
P1	PS	0.5e15	780
P3	PS	0.5e15	0-1200
P4	PS	3e15	0-780
P5	PS	1e15	0-1200

- 250 µm thick n-bulk diodes
- 9 mm² active area
- Bulk separated from surface current

Setup

- n-bulk diodes glued on PCB and contacted via wirebonds
- Measurements performed in climate chamber
- Temperature monitoring via Pt1000 on PCB (used as reference for scaling)

F. Wizemann (TU Dortmund)

Total current vs bulk current

Scaling with Fixed Literature Value $E_{ m eff}$ = 1.21 eV

- Good agreement in plateau region
- \blacksquare Bad scaling below plateau (here: \lesssim 200 V)
- Offset in plateau region

Power limit

- Goal: Determining suitable power limit
- Self-heating induces a change in bulk current after jump to target voltage
- Set limit at 5 mW to exclude areas with clear correlation between power and I_{min}/I_{max} technische universität dertmund

Determining *E*_{eff}

- IV curves measured every 2 K from 0 °C to -36 °C
- For every voltage, *E*_{eff} is determined from scaling behaviour extracted from IV curves
- Linearized data is fitted

$$I(T) = A \cdot T^{2} \exp\left(\frac{E_{\text{eff}}}{2 \cdot kT}\right)$$

$$\implies -2 \cdot kT \ln\left(\frac{I(T)}{T^{2}}\right) = p_{1}(T) = B + 2C \cdot kT$$

with $A = \exp(-C)$ and $B = E_{\text{eff}}$
technische universität
dortmund

F. Wizemann (TU Dortmund)

26.11.2018 9 / 15

*E*_{eff}-V Curves

- E_{eff} is determined from curves up to a selected maximum temperature (here: $-20 \,^{\circ}\text{C}$)
- If the power limit is exceeded at a single temperature, E_{eff} is not determined for that voltage

Variation of Maximum Temperature

- Lower maximum temperatures result in a lower measured E_{eff}
- Feature locations remain the same

26.11.2018 11 / 15

nnische universität

Fluence Dependence

*E*_{eff}-V curves seem to converge for high voltages (more data needed)
 Slope moves to higher voltages with fluence

F. Wizemann (TU Dortmund)

Temperature scaling

26.11.2018 12 / 15

Annealing Dependence

- *E*_{eff}-V curve similar in plateau
- Different behaviour
 - Height at start of plateau changes with annealing for P3
 - Slope moves to lower voltages for P5

technische universität dortmund

Scaling accuracy with $E_{\rm eff} = 1.21 {\rm eV}$

• Scaling error in a worst case scenario ($E_{eff meas} = 1.137 \text{eV}$):

- $\leq 12\%$ for literature value
- \leq 3% for measured value

 Scaling over large temperature scaling requires knowledge of *E*_{eff} of the device at a given voltage

F. Wizemann (TU Dortmund)

Conclusion and Outlook

- Dependence of *E*_{eff} on voltage investigated for irradiated and annealed samples
- *E*_{eff} -V curves stretched towards higher voltage with fluence
- For highly irradiated samples, voltage dependence is not negligible at typical operation voltages

 Measurement of more samples for statistics as well as neutron irradiated samples

