Experimental Determination of Proton Hardness Factors at Various Irradiation Facilities

C. Simpson-Allsop¹, K. Nikolopoulos¹, T. Price¹, L. Ram¹,
P. Knights¹, R. Canavan¹, P. Allport¹, L. Gonella¹, I. Mateu²,
F. Ravotti², M. Moll², F. Bögelspacher³, A. Dierlamm³.

¹University of Birmingham ²IRRAD Proton Facility ³Karlsruhe Institute of Technology.

33rd Annual RD50 Workshop, November 26 - 28, 2018

Cameron Simpson-Allsop

November 23, 2018

Introduction

- earlier Studies and Current Hardness Factor Values
- O C–V Measurements
- I–V Measurements
- Proton Irradiations
- 6 Results
- Onclusion and Outlook

Image: Image:

æ

Utilizing the I–V and C–V characteristics of BPW34F photodiodes, the hardness factors, κ , of proton beams at various energies have been measured.

- MC40 Cyclotron at the University of Birmingham (25 MeV).
- IRRAD Proton Facility at CERN (24 GeV).
- Irradiations Facility at the Karlsruhe Institute of Technology (23 MeV).

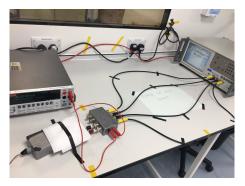
For **IRRAD**, the Results were compared to a similar study undertaken by **I. Mateu** in parallel.

Earlier Studies and Current Hardness Factor Values

- Current MC40 cyclotron value: 2.2 for 25 MeV protons^[1].
- KIT: 2.05 ± 0.61 for 24 MeV protons, and an earlier value of 1.85 for 26 MeV protons^[2].
- RD50 Tabulated values: ~ 2.56 for 25 MeV protons^[3].
- Studies at IRRAD facility: 0.56 (2015), and 0.60 (2016) for 24 GeV protons^[4].

C–V Measurements

Current - Voltage Relation and Maximum Depletion Voltage.

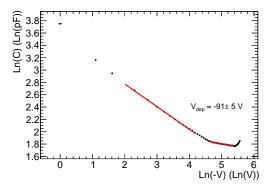

• The capacitance, C, of a photodiode, before maximum depletion is reached, is related to the reverse bias, V, by ^[5]:

$$C = A \sqrt{\frac{q \epsilon_{Si} N_{eff}}{2}} \frac{1}{\sqrt{V}}$$

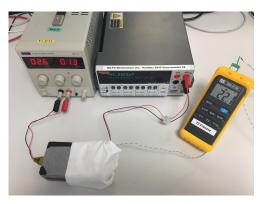
where A is the surface area of the diode, N_{eff} is a parameter related to the resistivity of the material, and all other symbols have their usual meanings.

- At **maximum depletion voltage**, capacitance becomes independent of voltage.
- Plotting **capacitance vs voltage** on a log plot should therefore show a straight line, becoming **flat** for maximum depletion.

C–V Measurements



Experimental setup for C–V measurements.


- Keithley 2410 Source Meter, Wayne Kerr Component Analyser and photodiode setup connected to a junction box.
- Keithley used to **apply bias** across the photodiode.
- Wayne Kerr used to measure capacitance across the photodiode at the bias set by the Keithley.

C–V Measurements Calculating Maximum Depletion Voltage

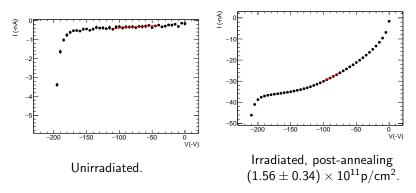
- By calculating the **intercept** of the two fits, **the maximum depletion voltage** could be calculated.
- Applying this method, a maximum depletion voltage value of $V_{dep} = -91 \pm 5 \text{ V}$ was inferred.

I–V Measurements

Experimental setup for I–V measurements.

- Aluminium shielded box containing the photodiode.
- Keithley 2410 Source Meter for I–V measurements of the photodiode.
- Thermocouple to monitor temperature.
- **Power supply** for a fan within the box.

I–V Measurements



Aluminium shielding box.

- Thermocouple fixed close to the photodiode.
- Electric fan for air circulation.
- Tape across any gaps in the box to block out light.
- The lid of the box could be closed to **shield the system** in Aluminium.

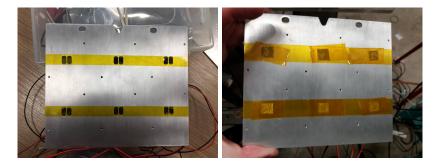
I–V Measurements

Results

The fits were evaluated at the maximum depletion voltage.

November 23, 2018

Proton Irradiations



The cool box at the MC40 high intensity irradiation facility. The photodiodes were installed in the box using dedicated aluminium mounts, and then irradiated at -27° C.

November 23, 2018

Proton Irradiations Mounting the Photodiodes

\otimes Beam direction.

Aluminium mount.

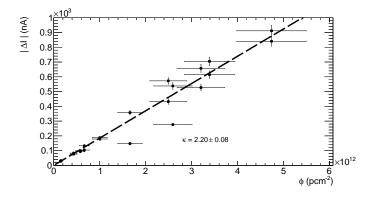
Cameron Simpson-Allsop

November 23, 2018

э

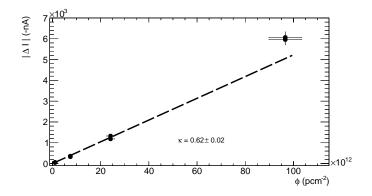
(a)

Post irradiation, all photodiodes were annealed for 80 minutes at 60°C. The **change in leakage current** pre- and post- irradiation is related to **proton fluence** by^[6]:


$$\Delta I = \alpha L^2 w \phi$$

where L^2 is the active area of the silicon, w is the maximum depletion width, and ϕ is the incident proton fluence. The hardness factor can be written as:

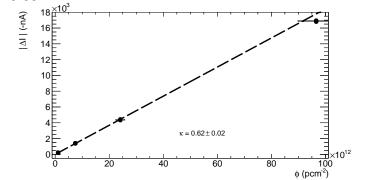
$$\kappa = \frac{\alpha}{\alpha_{neq}}$$
 since $\kappa = \frac{\phi_{neq}}{\phi}$


where α is the **current related damage rate** for protons, ϕ_{neq} is the **1 MeV neutron equivalent fluence**, and $\alpha_{neq} = (3.99 \pm 0.03) \times 10^{-17} \text{ Acm}^{-1[6]}$ (1 MeV neutron equivalent current related damage rate).

Results Hardness Factor of the MC40 Cyclotron

A value of $\kappa_{MC40} = 2.20 \pm 0.08$ for 25 MeV protons was inferred, using BPW34F photodiodes.

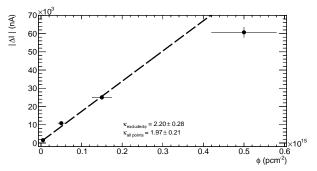
Results Hardness Factor of the IRRAD Proton Facility



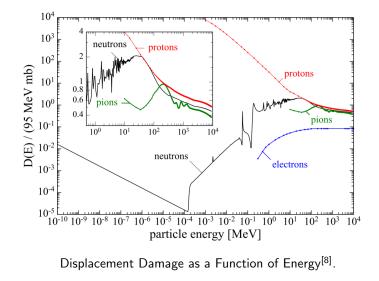
Using the same method, a value of $\kappa_{IRRAD} = 0.62 \pm 0.02$ for 24 GeV protons was inferred. These data were also obtained with BPW34F photodiodes.

Results

Hardness Factor of the IRRAD Proton Facility - Comparison with I. Mateu's Data


I.Mateu collected data with **FZ pad diodes**. Analysis of their data excluding the points at $\sim 10^{14}$ p/cm² yielded a value of $\kappa = 0.63$.

I. Mateu's data were **reanalysed** at the University of Birmingham, consistent results were obtained. From including all data points, $\kappa = 0.62 \pm 0.02$.


Hardness Factor of the KIT Irradiations Facility

For KIT, with BPW434F photodiodes, a value of $\kappa_{KIT} = 1.97 \pm 0.21$ for 23 MeV protons was obtained.

However, based on [7], for fluences greater than $\sim 5 \times 10^{13} n_{eq}/cm^2$, there is a non-linear response. Hence, excluding the highest fluence point, a value of $\kappa_{KIT} = 2.20 \pm 0.28$ was determined.

Displacement Damage Function

э

A AR & A B & A B &

Conclusion and Outlook

- The I–V and C–V characteristics of BPW34F photodiodes have been analysed.
- Using these characteristics, hardness factors for various proton beams have been determined.
- The results are in good agreement with earlier studies.

Facility	Hardness Factor	Energy
MC40 Cyclotron	2.20 ± 0.08	25 MeV
IRRAD	0.62 ± 0.02	24 GeV
KIT	2.20 ± 0.28	23 MeV

• In the future, it is suggested that studies are done to determine the current related damage rate for neutrons (This study assumed a value of $\alpha_{neq} = (3.99 \pm 0.03) \times 10^{-17}$ Acm^{-1[6]}), and therefore, determine independent hardness factor values.

A D K A D K A D K A D K

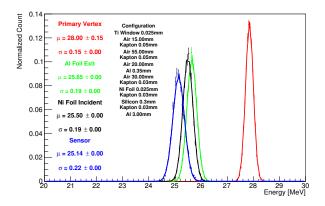
- T. Price. Experimental Determination of the Hardness Factor for the Birmingham Irradiation Facility. 30th RD50 Workshop (Krakow). June 2017. URL: https://indico.cern.ch/ event/637212/contributions/2608664/.
- A. Dierlamm. Proton Irradiation in Karlsruhe. 16th RD50 Workshop. 2010. URL: https://indico.cern.ch/event/ 86625/contributions/2103519/attachments/1080676/ 1541436/Irradiations_Ka.pdf.
 - *RD50.* Mar. 2018. URL: http://rd50.web.cern.ch/rd50/.

Isidre Mateu et al. NIEL hardness factor determination for the new proton irradiation facility at CERN. 28th RD50 Workshop. June 2016. URL: http://cds.cern.ch/record/2162852/files/AIDA-2020-SLIDE-2016-002.pdf?version=1.

- G. Casse. "The effect of hadron irradiation on the electrical properties of particle detectors made from various silicon materials". PhD thesis. Universite Joseph Fourier-Grenoble, 1998.
- M. Moll. "Radiation Damage in Silicon Particle Detectors". PhD thesis. University of Hamburg, 1999.

- F. Ravotti et al. "BPW34 commercial p-i-n diodes for high-level 1-MeV neutron equivalent fluence monitoring". In: 2007 9th European Conference on Radiation and Its Effects on Components and Systems. 2007, pp. 1–8. DOI: 10.1109/RADECS.2007.5205483.
 - M. Moll. "Displacement Damage in Silicon Detectors for High Energy Physics". In: IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 65, NO. 8 (Aug. 2018). URL: https://ieeexplore.ieee.org/stamp/stamp.jsp? arnumber=8331152&tag=1.

Fluence Determination

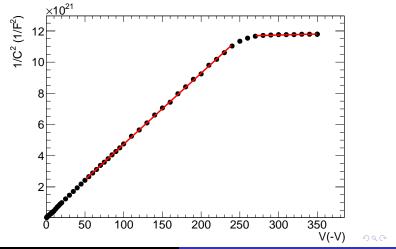

Calibrated Position				
Diode Position				
	Counter			

Schematic diagram of germanium counter.

- The irradiated nickel foils were analyzed using a germanium counter.
- Due to the weak activity of the foils, they had to be placed directly on top of the counter.
- A ratio of counts was taken between this position and the calibrated position.
- The measured counts from the foils were then converted into **proton fluences**.

э

Extra Slides Beam Energy Determination



Geant4 simulation revealing the **incident beam energy**, the **energy at the nickel foils**, and the **energy at the sample** (Courtesy of T. Price).

< □ > < □ > < □ > < □ > < □ > < □ >

Extra Slides Hardness Factor of the IRRAD Proton Facility - Comparison with I. Mateu's Data

For I. Mateu's data, the **maximum depletion voltage** was calculated for each sensor, as opposed to keeping a constant value.

Sensor Name	Max. Dep. Voltage (-V)	Fluence (p/cm^2)
W332-C4	249.52 ± 0.09	$7.44 imes10^{12}$
W332-F2	83.13 ± 0.52	$9.66 imes10^{13}$
W332-F8	190.97 ± 1.44	$2.41 imes10^{13}$
W332-M10	281.09 ± 0.13	$1.09 imes10^{12}$
W332-M12	80.74 ± 0.35	$9.66 imes10^{13}$
W332-M4	281.68 ± 0.13	$1.09 imes10^{12}$
W332-M6	207.36 ± 0.89	$2.41 imes10^{13}$
W332-M7	252.41 ± 0.15	$7.44 imes10^{12}$

Table: Obtained maximum depletion voltages for I. Mateu's data.

э

< 日 > < 同 > < 回 > < 回 > < 回 > <