

Characterization of silicon n⁺-p-p⁺ detectors with Al₂O₃ passivating layers grown by Atomic Layer Deposition method

E. Verbitskaya, N. Fadeeva, V. Eremin, D. Mitina Ioffe Institute, St. Petersburg, Russia

> J. Härkönen Ruđer Bošković Institute, Chroatia

P. Luukka, J. Ott Helsinki Institute of Physics, Finland

33 RD50 Collaboration Workshop CERN, Geneva, Nov 26-28, 2018

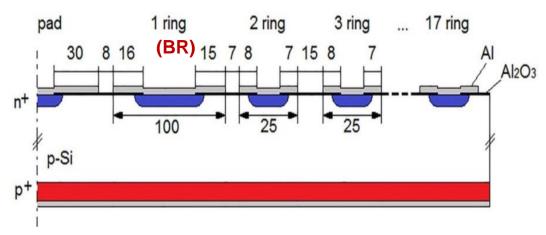
AI_2O_3 layers processed by ALD

Atomic Layer Deposition (ALD) AI_2O_3 layers – suggested for surface passivation in devices on p-Si with <u>low and high</u> Si resistivity

- 1. B. Hoex, et al., Appl. Phys. Lett., 91, 112107 (2007)
- 2. F. Werner, et al., J. Appl. Phys. 109, 113701 (2011)
- 3. M. Christophersen and B. F. Philips, 2011 IEEE Nucl. Sci. Symp. Conf. Rec., p. 113
- 4. J. Härkönen, et al., Nucl. Instrum. Meth. A 828 (2016) 46
- 5. J. Härkönen, et al., Nucl. Instrum. Meth. A 831 (2016) 2

ALD method of Al₂O₃ processing:

Low temperatures (200-300°C) After standard planar technology process Thin films (tens of nm) Negative charge, $Q_f = -(10^{11}-10^{13})$ cm⁻² (referred data) – allows to isolate n⁺ segments and simplify design and processing of n-on-p detectors

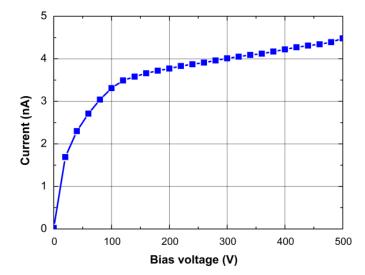

Goals of the study

Approach: to combine experimental data and TCAD simulations for characterizing n-on-p Si detectors with alumina isolating layers

- Measure the characteristics of n⁺-p-p⁺ silicon detectors with Al₂O₃ isolation films designed for high voltage operation
- Simulate the potentials and electric field in the n-on-p detector with multiple n⁺ rings
- Extract the fixed charge density Q_f in Al₂O₃ in the detector under study
- Estimate the impact of the charge density Q_f in Al₂O₃ on the electric field
- Define the parameters of the detector design allowing to <u>maintain high</u> voltage operation

The results are published in: V. Eremin, et al., 2018 JINST 13 P11009

Si n⁺-p-p⁺ detectors with Voltage Termination Structure (VTS)


MCz p-type silicon, $\rho = 7 \text{ k}\Omega\text{cm}$, ($N_{\text{eff}} = 1.9 \times 10^{12} \text{ cm}^{-3}$), d = 300 μm $V_{\text{fd}} = 125 \text{ V}$ active area 5 × 5 mm²

See presentation of Jennifer Ott

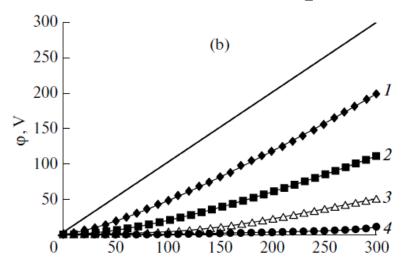
- ALD at 200-300°C after ion implantation and annealing
- \circ mean Al₂O₃thickness about 50 nm
- $\circ~Q_f$ in the range of -(10^{11}-10^{12}) cm^{-2}

n-on-p detector with bias ring (BR) + 16 floating guard rings - Voltage Terminating Structure (VTS) distributing the bias /potential over the rings

I-V characteristic

4

Potential distribution in Si n-on-p detectors with VTS


Distribution of potential ϕ over the Schematic of the ring rings vs. applied bias $V_{\rm b}$ potential 500 pad measurements pad 10¹² Q 400 Vbias 1 ring ... 17 ring 3 ring 2 ring Potential (V) 300 n+ 9 p-Si 10 200 p 12 13 14 100 15 500 16 17 400 0 100 300 400 500 0 200 Potential (V) ring #4 Voltage (V) 300 vs. $V_{\rm b}$ curves show two regions: Φ 200 the flat region with a zero potential, 100 \mathbf{V}_{th} region of the gradual potential rise starting at threshold voltage $V_{\rm th}$. 100 200 300 400 500 0 Voltage (V)

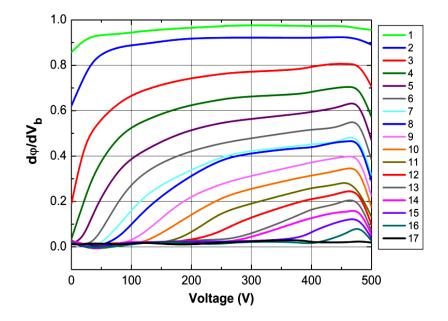
E. Verbitskaya, et al., 33 RD50 Workshop, CERN, Geneva, Nov 26-28, 2018

5

Punch-through mechanism of potential distribution over the rings

 ϕ (Vb) curves in p-on-n detectors with SiO₂ isolation (positive charge in SiO₂)

V. Eremin et al., *Semiconductors* (2011) **45**, No. 4, 536)


Similar shapes of $\varphi(Vb)$ curves in p-on-n detectors with SiO₂ isolation (positive charge in SiO₂) and in n-on-p detectors with Al₂O₃ isolation (negative charge in alumina) evidences the same punch-through mechanism of potential transfer:

coupling of neighboring rings occurs via carrier injection from inner ring to the outer ring that switches one of the junctions in forward direction

Difference					
p-on-n with SiO ₂ – hole injection from p^+	n-on-p with Al_2O_3 – electron injection from n ⁺				

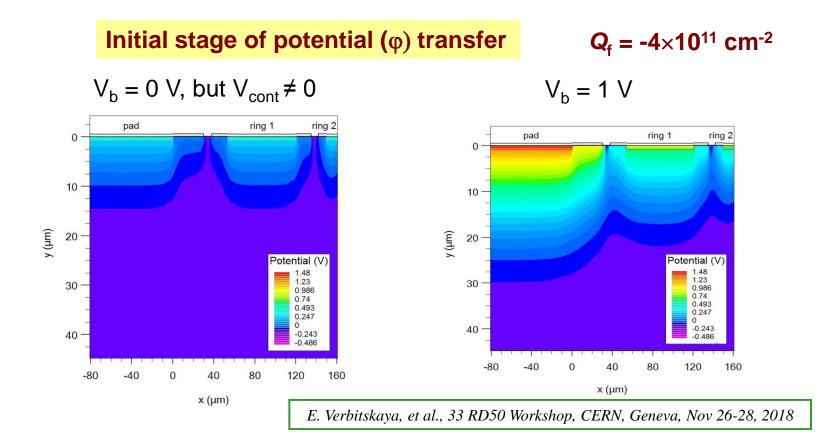
Rate of potential growth

 V_{th} is visualized in the dependence of derivative $d\phi/dV_b$ vs. $V_b \rightarrow$ shows the rate of potential growth

 V_{th} is about zero for the rings 1-4;

At $V_{\rm b} > V_{\rm th}$ the rate of potential growth is not constant:

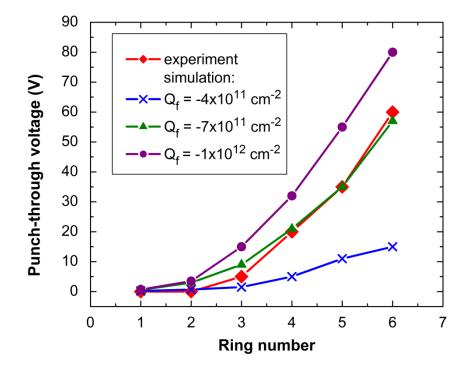
first increases and then is low or close to zero \rightarrow manifests reaching the steady-state potential value;


At $V_{\rm b}$ > 450 V the rate of the φ rise drops.

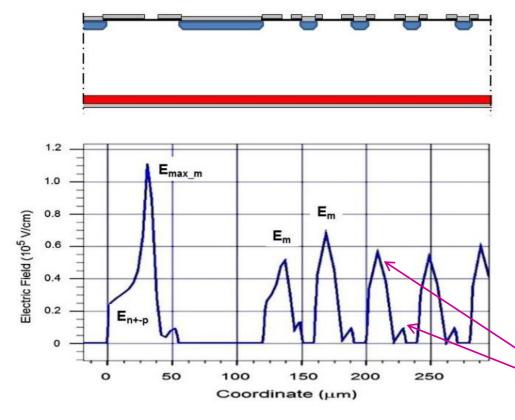
Simulations of potentials and 2D electric field

2D Athena and Atlas (Silvaco) TCAD tool

- basic equations solved via iteration procedure
- Selberherr model of impact ionization


- the n⁺-p junction depth of 1 μ m
- Al₂O₃ thickness of 52 nm
- ◆ Q_f as a parameter -(1-10)×10¹¹ cm⁻²

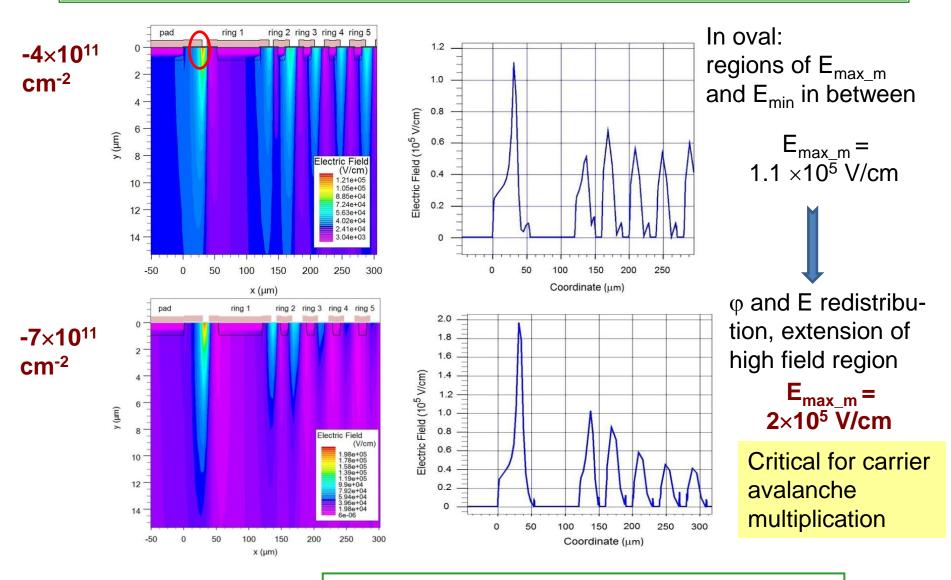
Simulated potentials at various Q_f


Extraction of Q_f from comparison of experimental and simulated data on V_{th}

- Q_f = -1×10¹¹ cm⁻² no agreement
- Q_f = -4×10¹¹ cm⁻² V_{th} agree for the 1st and 2nd rings
- $Q_f = -7 \times 10^{11} \text{ cm}^{-2}$ agreement for rings 4-6 better than 10%
- Q_f = -1×10¹² cm⁻² all simulated V_{th} values exceed the experimental data

In the detector under study (used design and technological process) Q_f is within the range -(4-7)×10¹¹ cm⁻²

Simulation of electric field distributions


<u>Top</u>: detector schematic topology <u>Bottom</u>: electric field at the distance of 0.1 μ m **beneath** Al₂O₃/Si **interface** at 500 V and Q_f of -4×10¹¹ cm⁻²; taken from 2D electric field

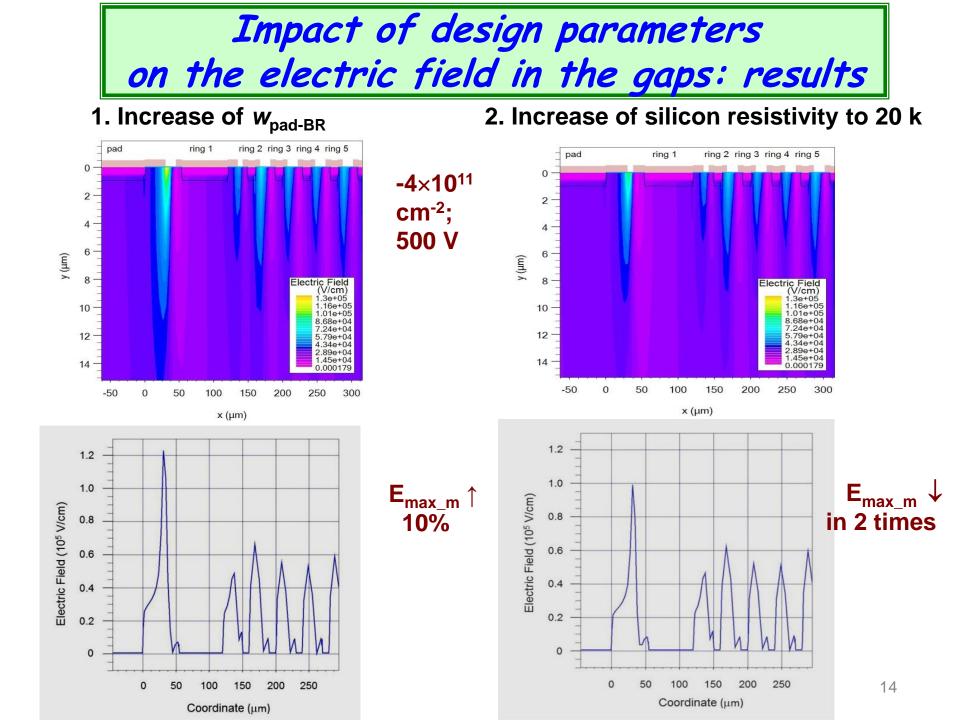
Specific points in E(x)

 E_{n+-p} - at pad junction edge (x = 0) E_m - E maxima at outward edges of the n⁺ segment field plates E_{max_m} – absolute E maximum, at the edge of the pad field plate

E around passivated gap - a structure with two separate peaks and a minimum *in between*

Simulated electric field at various Q_f

Impact of design parameters on the electric field in the gaps: goal


Goal: reduction of E at the edge of the pad field plate

Two parameters were changed in simulations for $n^+-p^-p^+$ detectors with Al_2O_3 isolation:

- > Width of the gap between the edges of the pad field plate and inner metal plate of the bias ring (w_{pad-BR})
- \blacktriangleright Silicon resistivity ρ

Known for p-on-n detectors:

- w_{pad-BR} growth increases E at the pad field plate edge; our task is estimating the scale of this increase;
- use of n-type 20 kΩcm silicon (FZ Si) allowed to realize detectors with a thickness of 1 mm, operating up to 1000 V with a current density ≤ 10 nA/cm² (see V. Eremin et al., *Semiconductors* (2011) 45, No. 4, 536)

Parameters of the detector design and characteristics derived from simulations

$\alpha_e = A_e exp\left(-\frac{B_e}{E}\right) \qquad \qquad j(x) = \int eGdx + \int_0^d \alpha_e(x)j_e(x)dx$							
Si grade	$ ho$ (k Ω cm)	width of the pad field-plate (µm)	width of pad-BR gap (µm)	$Q_{\rm f}$ (cm ⁻²)	E _{max_m} at pad field-plate edge (V/cm)	(cm^{-1})	
experiment							
MCZ	7	30	8	-(4-7) ×10 ¹¹			
				$\times 10^{11}$			
simulations							
MCZ	7	30	8	-1×10 ¹¹	5×10^{4}	3.3×10 ⁻⁵	
MCZ	7	30	8	-4×10 ¹¹	1.1×10^{5}	14.7	
MCZ	7	30	8	-7×10 ¹¹	2×10 ⁵	2×10^{3}	
MCZ	7	30	15^*	-4×10 ¹¹	1.2×10^{5}	36.4	
FZ	20	30	8	-4×10 ¹¹	1×10^{5}	4.93	

 * the width of the BR field plate is reduced to 9 $\mu m.$

With respect to avalanche multiplication:

- \triangleright Q_f of -7×10¹¹ cm⁻² is critical
- Application of 20 kΩcm p-Si allows reducing the electric field and α_e Experiment: see [5] in slide 2, n-on-p detectors operating at V up to 900 V.

Summary

1. The measurements showed efficient VTS operation: gradual potential attenuation to less than 10% of the applied bias on the last n⁺ ring.

2. Punch-through model built for the p⁺-n-n⁺ detectors with SiO₂ passivation is valid for n⁺-p-p⁺ detectors having AI_2O_3 isolation layer with the opposite oxide charge.

3. Simulations allowed extracting the Q_f charge of -(4-7)×10¹¹ cm⁻² in Al₂O₃ in the detector with the used design and technology (-(10¹¹-10¹³) cm⁻² is referred to in literature).

4. Q_f is shown to be crucial for VTS operation and detector performance. For the studied detector, an upper limit of Q_f is -7×10¹¹ cm⁻².

5. A promising approach to reducing the electric field is to use p-type Si with increased resistivity of about 20 k Ω cm.

Thank you for attention!