Defect & Material Characterization

5 Years Work Plan

•Activities: Material and Defect Characterization

- Detection and microscopic characterization of standard and material engineered silicon via dedicated techniques (DLTS, TSC, TDRC, SIMS, ICP-MS, PITS, FTIR, TCT, EPR, HRTEM)
- Identification of electrically active defects induced by irradiation responsible for trapping, leakage current, change of Neff, change of E-Field
- Studying possible application for radiation hardening
- Deliver input for device simulations (e.g. TCAD) to predict detector performance under various conditions

Identified milestones for next 5 years organized in 3 Work Packages:

• WP 5.1.1. Electrically active defects in p-type silicon

Upcoming milestone This work will focus on the analysis of electrically active defects and of the radiation induced changes in the electrical characteristics of devices built on p-type silicon.

- M1: Detection/characterization of all radiation induced defects in STFZ and engineered silicon (Q3/2019)
- M2: Determine defect annealing behaviour in STFZ and engineered silicon. Correlation with device performances (Q4/2019)
- M3: Determine defect transformations and kinetics in STFZ and engineered silicon after treatments at high temperatures (between 150 °C and 350 °C). Correlation with the device performance (Q3/2020)
- M4: Identify the role of impurities in defect formation (Q1/2021)
- M5: Detection/characterization of radiation induced defects in LGAD and HV-CMOS sensors made with STFZ and engineered p-type silicon, establishing annealing behaviour and correlation with electrical performance (Q3/2021)
- M6: Validity tests on optimized material engineered sensors (pads, LGADs and HV-CMOSs). Comparison between prediction and experiments (Q1/2022)
- M7: Validity tests on finally optimized material engineered sensors (pads, LGADs and HV-CMOSs) (Q3/2023)

- WP 5.1.2. Microstructural Investigations on extended and clustered defects This work targets microstructural investigations of extended and clustered defects by electron microscopy:
 - M1: Microstructural characterization of the radiation induced clustered defects (fluences between 10¹⁵ and 10¹⁷ n_{eq} cm⁻²) and monitoring of the evolution of clusters at 80 °C (Q3/2019)
 Upcoming milestone
 - M2: In situ- annealing studies at 5 temperatures (between 150 °C and 350 °C) in order to determine the structural transformations of the extended and clustered defects (Q3/2020)
 - M3: Microstructural characterization of the oxide-semiconductor interface in irradiated LGADs and HV-CMOS devices, time evolution at 80 °C (Q3/2021)
 - M4: Microstructural characterization of the oxide-semiconductor interface in irradiated optimized LGADs and HV-CMOS devices (Q3/2022)

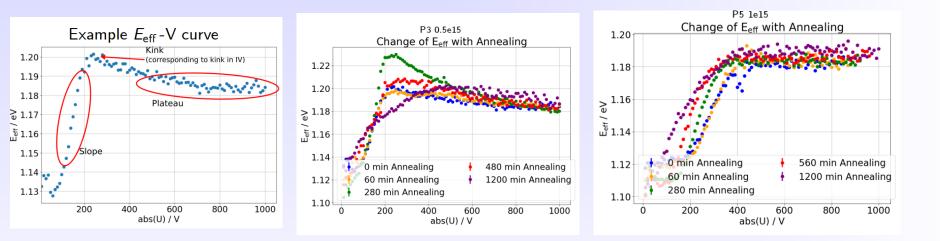
• WP 5.1.3 Theory of defects and defect kinetics modelling

- M1: Modelling of the detected defect generation/kinetics and of the impact on the device performance corresponding to annealing treatments at 80 °C (Q3/2020)
- M2: Modelling of the detected defect generation/kinetics and of the impact on the device performance corresponding to annealing at temperatures between 150 °C and 350 °C and final assessment of the role of the intentional added impurities (Q1/2021)
- M3: Identification of the optimal impurity concentrations for pads, LGADs and HV-CMOSs as input for production. (Q3/2021)
- M4: Improvements of the developed models according to validity test foreseen as 5.1.1-M6 and provide new optimization solutions for 5.1.1-M7. (Q3/2022)
- M5: Validity test for the developed theoretical models based on the results obtained on 5.1.1-M7 optimized sensors (Q3/2023)

Defect & Material Characterization

This Workshop

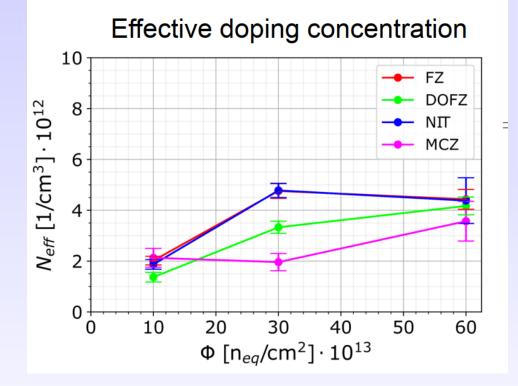
RD50 November 2018 - M.Moll


RD50 Bonn Facility & E_{eff} of I_{Leak}

Pascal Wolf: New Irradiation Facility at Bonn (up to 14 MeV protons)

- 14 MeV protons with a hardness factor of κ≈ 3 can be generated with beam currents of up to ≈ 1 μA at the HISKP cyclotron

• Felix Wizemann: Determination of Eeff for Leakage Current scaling



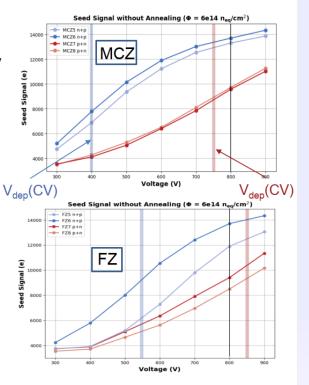
Nitrogen enriched Silicon

Jan Cedric Hoenig – Nitrostrip project

- Electrical tests:
 - Under neutron irradiation FZ, NIT and DOFZ behave the same.
 - Under proton irradiation slower change of effective doping concentration observed for DOFZ.
 - Both show (small) variations in depletion voltage.
- E-TCT:

- Already low fluencies show the formation of a double junction. For higher fluencies effect becomes more pronounced.
- Slightly improved behavior of the 1e14 neq/cm² proton irradiated NIT sample compared to FZ.
- Plans:
 - Investigate oddities of 1e14 neq/cm 2 Nitrostrip and 1e15 neq/cm 2 neutron irradiated sensors.
 - Conduct E-TCT annealing study.
 - Measure E-field and charge collection temperature dependent.

Mixed irradiations

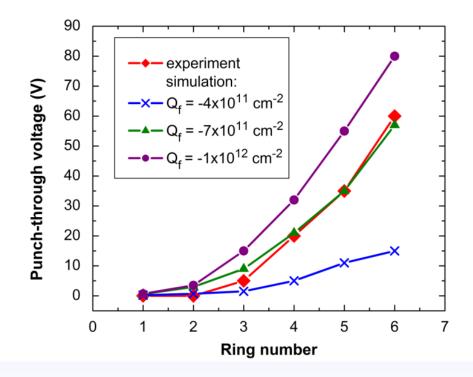


• Jan Ole Gosewich -- Proton/Neutron vs. Neutron/Proton

Order of irradiation matters!

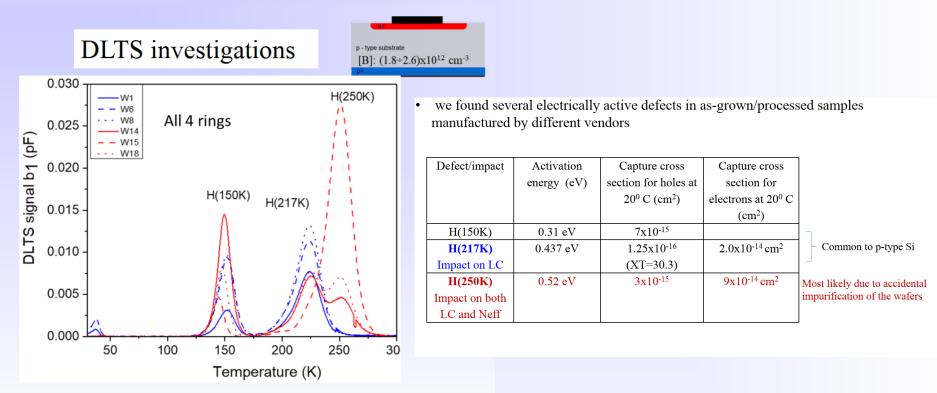
Seed Signal before Annealing

- Voltage dependence of the signal (MCZ)
 - Sensors irradiated with n+p show a significantly higher signal for all bias voltages above 300V
 - Consistent with the CV characteristics
 - \rightarrow Lower depletion voltage for n+p
- Voltage dependence of the signal (FZ)
 - One sensor with n+p clearly above the others
 - FZ5 similar signal to p+n for low voltages but higher signal at higher voltages(?)
 - Others consistent with CV characteristics
 - \rightarrow Lower depletion voltage for n+p



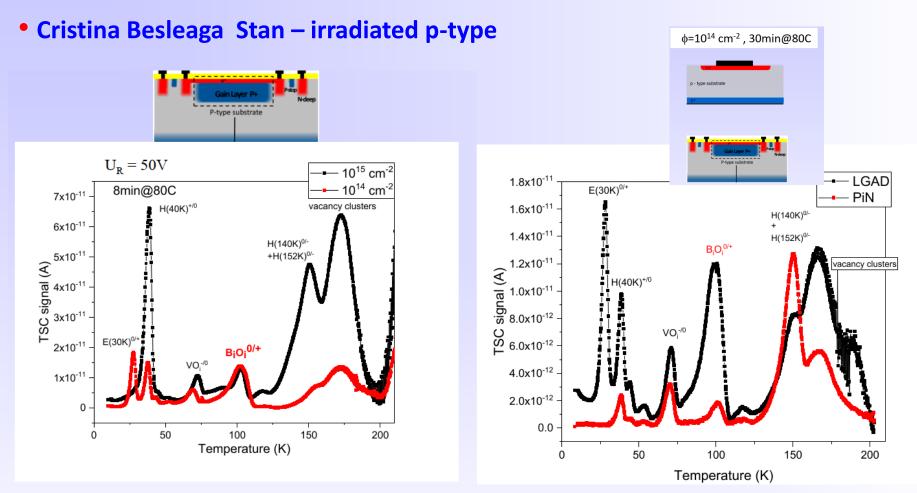
• Elena Verbitskaya – Al₂O₃ passivation

Extraction of Q_f from comparison of experimental and simulated data on V_{th}



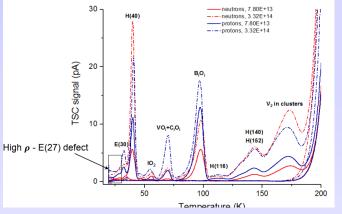
- $Q_f = -1 \times 10^{11} \text{ cm}^{-2} \text{ no}$ agreement
- Q_f = -4×10¹¹ cm⁻² V_{th} agree for the 1st and 2nd rings
- Q_f = -7×10¹¹ cm⁻² agreement for rings 4-6 better than 10%
- Q_f = -1×10¹² cm⁻² all simulated V_{th} values exceed the experimental data

p-type silicon - defects


• Cristina Besleaga Stan – non irradiated p-type

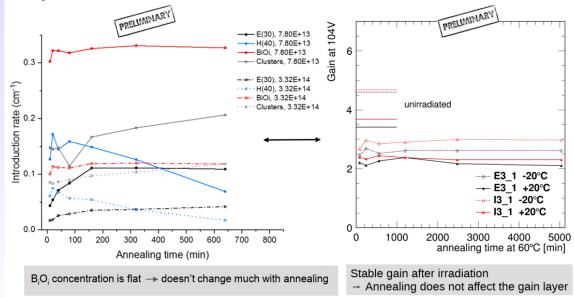
H(250K) trapping parameters: $E_a=0.52 \text{ eV}, \sigma_p=3x10^{-15} \text{ cm}^2$ (di

p-type silicon - defects



In LGAD diodes most of the defects increase in concentration with fluence but the BiOi
 ⇒ A saturation of BiOi possible caused by the limited amount of Oi

Epi p-type : defect formation



• Yana Gurimskaya : TSC on proton and neutron irradiated Epi p-type

Isothermal Annealing @60°C. Protons

Evolution of the defects concentrations normalized by fluence in p-type EPI silicon sensors obtained by TSC spectroscopy method due to the proton irradiation with two different fluences of 7.8E13 n_{eq}/cm^2 and 3.32E14 n_{eq}/cm^2 with isothermal annealing. Comparison with the results on annealing study of LGADs.

TSC on N- and B- doped Silicon

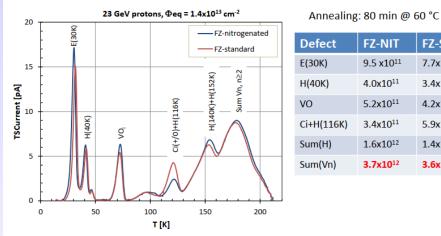
FZ-STD

7.7x10¹¹

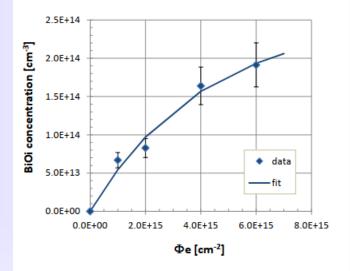
3.4x10¹¹

4.2x10¹¹

5.9x10¹¹


1.4x10¹²

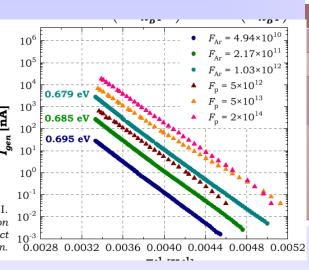
3.6x1012


- Eckhart Fretwurst Nitrogenated vs. Standard silicon
 - No clear difference between standard and N doped silicon

Electron irradiation

BiOi generation with e-irradiation measured

B_iO_i concentration versus Φ_a


- Boron removal parameter $c_{p} \approx 2.4 \times 10^{-16} \text{ cm}^{2}$,
- For a hardness factor of κ_{neg} (5.5 MeV, e)=3.98x10⁻² * $c_{neq} \approx 6.1 x 10^{-15} \ cm^2$

* (I. Jun et al., IEEE TS Nucl. Sci. Vol.56, No.6, 2009)

Proton, Ion Damage and SRIM

• Daria Mitina 40 Ar lons // 50 MeV protons

		protons	⁴⁰ Ar ions	ratio	
a [A/cm]		0.83×10 ⁻¹⁷	8.17×10^{-17}	9.81	
G [cm ⁻¹]		1.3	16.3	12.5	Carlina
F ^{scsi} [particle/cm ²]		1.8×10^{13}	2.0×10^{12}	9	Goefficient
<i>g</i> [cm ⁻¹]	V-O	0.73	10	13.7	00
	VV	0.37	3	8.11	ss ~ 11
	VV -	0.37	5	13.5	
	$C_i - O_i$	1.30	12	9.23	

50 MeV protons

nor	on fluence					
	$F_{p}^{SCSI} = 1.8 \times 10^{13} \text{ p/cm}^{2}$					
u -1x10 ¹²	$F_{\rm Ar}^{\rm SCSI} = 2.0 \times 10^{12} \text{ ion/cm}^2$					
N						
-2x10 ¹²	 experiment: ⁴⁰Ar ions - Hamburg model: ⁴⁰Ar ions Hamburg model: protons 					
n -3x10 ¹²	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

collisions	8	132		
displacements	8	1725		
vacancies	1	1594		
collision events for 3 incident particles	COLLISION EVENTS Target Displacements 45x10 ⁴ 45x10 ⁴ 45x10 ⁴ 35x10 ⁴ 35x10 ⁴ 25x10 ⁴ 25x10 ⁴ 15x10	(uol-uootsi Displacements Target Displacements 0.016 0.014 0.012 0.006 0.006 0.006 0.006 0.006 0.002 0.000 0.002 0.002 0.002 0.002		

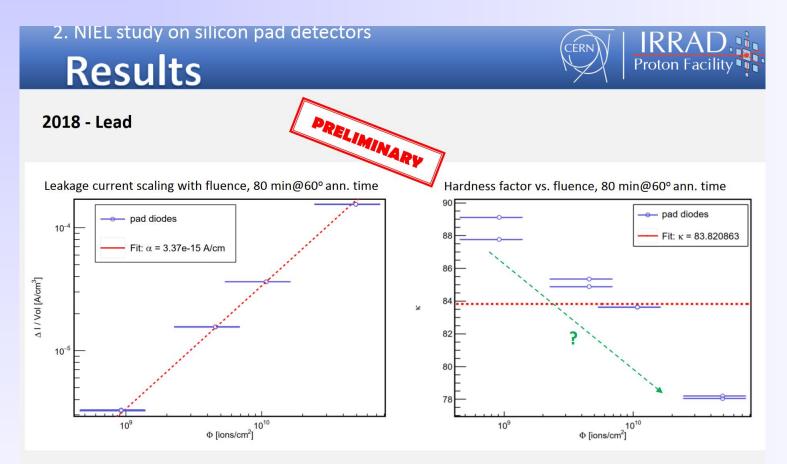
1.62 GeV ⁴⁰Ar ions

Hardness Factors

Cameron Simpson-Allsop

Conclusion and Outlook

- The I-V and C-V characteristics of BPW34F photodiodes have been analysed.
- Using these characteristics, **hardness factors** for various **proton beams** have been determined.
- The results are in good agreement with earlier studies.


Facility	Hardness Factor	Energy
MC40 Cyclotron	2.20 ± 0.08	25 MeV
IRRAD	0.62 ± 0.02	24 GeV
KIT	2.20 ± 0.28	23 MeV

In the future, it is suggested that studies are done to determine the current related damage rate for neutrons (This study assumed a value of α_{neq} = (3.99 ± 0.03) × 10⁻¹⁷ Acm^{-1[6]}), and therefore, determine independent hardness factor values.

Ions at CERN

• Isidre Mateu

Hardness factor measured ~84

Values from FLUKA simulation and SR-NIEL are around 400!

26/11/2018

33rd RD50 Workshop, CERN

14 2018 - M.Moll -17-

Defect & Material Characterization

Discussion

RD50 November 2018 - M.Moll

A common project ?

- Repeat proton/neutron and neutron/proton project
- Lots of discussions on Hardness factors.
 - We should "standardize" the procedure to measure this!
- Should we initiate a common project on the production of simple diodes aiming for Hardnessfactor (NIEL) and "basic properties" (e.g. Eeff for leakage current) determination.
- I imagine a 6 inch wafer with mainly diodes (n- or p-type?); Thickness of 300 microns

- Compare Al2O2 charge in strip sensor vs. MOS capacitor.
- Investigate impact of thermal neutrons on Boron removal (B-10 capture)
- P-EPI : Look for potential depth dependence of defect production from variation of [O] profile
- P-type evaluation: On good way, continue the program