Test beam results of irradiated RD53A 3D modules for ATLAS ITk pixel detector

Giulia Giannini, Sebastian Grinstein, Stefano Terzo, Maria Manna, Giulio Pellegrini, David Quirion

> 33rd RD50 workshop November 28th, 2018

HL-LHC Upgrade

- LHC is headed towards High Luminosity upgrade to improve physics reach by increasing the luminosity
 - Average of 200 simultaneous interactions

Large pile-up

- Challenges:
- Higher particle fluence

Better resolution -> smaller pixel size

Radiation hard: develop novel sensor concepts that can survive very high radiation exposure

Need for new detectors!

HL-LHC Upgrade

- LHC is headed towards **High Luminosity upgrade** to improve physics reach by increasing the luminosity •
 - Average of 200 simultaneous interactions •

Short drift path for electrons-holes pairs towards columns

Radiation hardness!!

Drift path decoupled from active thickness

Baseline for the innermost layer of ATLAS ITk pixel detector

Giulia Giannini

RD53A modules

- RD53A chip first prototype of HL-LHC pixel ASIC
- CNM -> 3D sensor production compatible with RD53A chip
 - Single sided process
 - SOI wafers
 - 150 µm active thickness, 300 µm support wafer
 - 50x50 μm^2 and 25x100 μm^2 1E
 - Electroless UBM at CNM (not always perfect but not going to be used in final production)
- Flip chip and assembly at IFAE
- Characterisation with YARR system

Wafer 3

X-ray image of bump bonds

Flip-chip at IFAE

Giulia Giannini

Produced RD53A modules

	Wafer	Sensor	RD53A Chip (GP1 W1 3AS180701#11)	Bump Bonding	Geometry (µm²)	
1	No sensor		3-3	-	-	-
2	W4	1-5	3-10	Good	50x50	IRRADIATED AT KIT TO 5E15 Measured at August tb
3	W3	3-1	6-5	Good	25x100 1E	Measured at July tb BUT died when moving to another PCB
4	W3	1-9	4-12	Good	50x50	IRRADIATED AT PS 1E16 Measured at October tb
5	W3	1-7	4-11	Good	50x50	Measured at July tb BEING IRRADIATED AT CYRIC TO 1E16
6	W3	3-2	3-11	Failed	50x50	Flip-chip failed due to bad UBM
7	W1	1-4	3-11 (reused!)	Bad	50x50	IRRADIATED AT PS 1E16 Mostly disconnected
8	W1	1-6	6-4	Good	50x50	IRRADIATED AT PS 1E16 Measured at October tb
9	W1	3-2	6-3	Good	25x100 1E	Shorted (problematic wire bonding)
10	W1	3-1	7-3	Edge off	25x100 1E	IRRADIATED AT KIT 5E15 Measured at October tb
11	W1	1-11	7-4	Good	50x50	Fell apart disconnect. now in reworking

Giulia Giannini

SPS test beams

FAE

- **BDAQ** system to readout RD53As
- Cooling box available in H6A for irradiated devices

July

• RD53A unirradiated modules, 50x50 μm^2 and 25x100 μm^2 1E

August

- First irradiated RD53A to 5e15 neq/cm²
 - 50x50 µm²
 - Uniformly irradiated at KIT with protons to 5e15 n_{eq}/cm^2
 - Both 0° and 15° measured

October

- Irradiated RD53A to 5e15 n_{eq}/cm²
 - 25x100 µm² 1E
 - Uniformly irradiated at KIT with protons to 5e15 n_{eq}/cm²
 - Both 0° and 15° measured
- 3 irradiated RD53As to 1e16 n_{eq}/cm²
 - 50x50 μm²
 - Non-uniformly irradiated at PS with protons to 1e16 n_{eq}/cm²

33rd RD50 workshop 28/11/2018

Giulia Giannini

SPS test beams

- **BDAQ** system to readout RD53As
- Cooling box available in H6A for irradiated devices

July

RD53A unirradiated modules, 50x50 µm² and 25x100 µm² 1E

August

- First irradiated RD53A to **5e15 n_{eq}/cm²**
 - 50x50 µm²
 - Uniformly irradiated at KIT with protons to 5e15 n_{eq}/cm²
 - Both 0° and 15° measured

October

- Irradiated RD53A to 5e15 neg/cm²
 - 25x100 µm² 1E
 - Uniformly irradiated at KIT with protons to 5e15 neq/cm²
 - Both 0° and 15° measured
- 3 irradiated RD53As to **1e16 n_{eq}/cm²** Analysis on going •
 - 50x50 µm² •
 - Non-uniformly irradiated at PS with protons to 1e16 neg/cm²

33rd RD50 workshop 28/11/2018

Giulia Giannini

50x50µm² - 5e15 n_{eq}/cm² KIT - Tuning linear FE

Linear FE calibrated to threshold of ~1600e with a noise dispersion of ~110e

$50x50\mu m^2$ - 5e15 n_{eq}/cm² KIT - Tuning diff. FE

Differential FE calibrated to threshold of ~1000e with a noise dispersion of ~80e

Giulia Giannini

$50x50\mu m^2$ - 5e15 n_{eq}/cm² KIT - 0°

0.9

0.8

0.8

0.8

0.8

0.8

25

20

15

10

10

15 20

25

30

35

40

Long Side [µm]

10/26

45 50

25

20

20

15

Giulia Giannini

25

30

35

40

45 50

Long Side [µm]

• In pixel map:

0.9

0.8

0.8

0.8

0.8

- Inefficiency due to columns very visible
- Differential FE shows higher efficiency

$50x50\mu m^2$ - 5e15 n_{eq}/cm² KIT - 15°

- In pixel map:
 - In both FEs columns inefficiency is less visible

Giulia Giannini

11/26

45 50

Long Side [µm]

20 25

0.8

0.8

$25x100 \ \mu m^2$ 1E - 5e15 n_{eq}/cm^2 KIT - Tuning linear FE

RD53A preliminary Chip S/N: W1 3 1 5e1! **RD53A** preliminary Chip S/N: W1 3 1 5e1! Threshold distribution for enabled pixels Noise Electrons $\mu = 102 \Delta VCAL$ = 1083 ea 201 100 $\sigma = 13 \Delta VCAL$ · 12 = 126 e Failed fits: 270 - 10 TDAC Column Long tails Noise [Electrons] Δ VCAL Noise [Δ VCAL] **RD53A preliminary** Chip S/N: W1_3_1_5e1! **RD53A preliminary** Chip S/N: W1 3 1 5e1! S-curves for 26112 pixel(s) Noise distribution for enabled pixels Electrons Electrons = 10⁴ $\mu = 8.5 \Delta VCAL$ = 85 e⁻ $\sigma = 1.7 \Delta VCAL$ = 17 e 10³ Failed fits: 270 Occupancy pixels of hits 00£ 10² of # Low noise ~90e 10¹ Δ VCAL Δ VCAL

• Differential FE calibrated to threshold of ~1000e with a noise dispersion of ~90e

Giulia Giannini

15/26

25x100 µm² 1E - 5e15 n_{eq}/cm² KIT - Tuning diff. FE

Differential FE calibrated to threshold of ~1200e

Giulia Giannini

$25x100 \ \mu m^2 \ 1E \ - \ 5e15 \ n_{eq}/cm^2 \ KIT \ - \ 0^\circ \ - \ 40V$

Efficiency map:

- A lower efficiency band is visible at bottom part of the sensor (disappearing at higher voltages)
 - Suspect it has been irradiated to higher fluences due to a scattering of proton beam on the metal protection of the board during irradiation
 - ➡ As already observed for irradiations of AFP module at KIT (<u>J. Lange et al., JINST 10 C03031 (2015</u>))
- Restricted region of interest to calculate efficiency

Giulia Giannini

$25x100 \ \mu m^2 \ 1E \ - \ 5e15 \ n_{eq}/cm^2 \ KIT \ - \ 0^\circ \ - \ 40V$

Efficiency map:

- A lower efficiency band is visible at bottom part of the sensor (disappearing at higher voltages)
 - Suspect it has been irradiated to higher fluences due to a scattering of proton beam on the metal protection of the board during irradiation
 - As already observed for irradiations of AFP module at KIT (<u>J. Lange et al., JINST 10 C03031 (2015</u>))
- Restricted region of interest to calculate efficiency

Giulia Giannini

25x100 µm² 1E - 5e15 n_{eq}/cm² KIT - 0°

33rd RD50 workshop 28/11/2018

Short Side[

hort Side[um]

$25x100 \ \mu m^2 \ 1E \ - \ 5e15 \ n_{eq}/cm^2 \ KIT \ - \ 15^{\circ}$

Giulia Giannini

Short Side[

20/26

CNM Si-Si wafer run

- On going CNM run (AIDA)
 - Design fully compatible with 3D sensor specifications
 - Single Sided process on Si-Si wafers,
 - 150 µm active thickness, 200 µm handle wafer
 - 130 µm column depth, 8µm column diameter
 - 9 RD53 50x50 µm² (1-x)
 - 9 RD53 25x100 µm² 2E (2-x)
 - 2 RD53 25x100 µm² 1E (3-x)
- New sensors ready early next year (February)

Giulia Giannini

- First results of 150 µm thick RD53A uniformly irradiated to 5e15 neq/cm² at KIT
 - 50x50 μm²
 - 97% hit efficiency at 40V at 1ke for differential FE at 1ke
 - Slightly lower (96.6%) for linear FE at 1.5ke
 - About 99% hit efficiency in both linear and differential FEs when tilted 15°
 - 25x100 µm² 1E
 - ~97% hit efficiency at 70V for both FEs
 - Respectively about 98% and 99% hit efficiency for linear differential FE at 70V when tilted 15°

Future plans:

- Analysis and new measurements on going for modules irradiated at PS to 1e16 n_{eq}/cm²
- One module sent for irradiation at CYRIC (Japan) to 1e16 n_{eq}/cm²
- New CNM run of **Si-Si wafer** on going
 - New sensors early next year

Thanks for your attention!

Backup

Giulia Giannini

3D vs Planar

- n+ column
- Inter-electrode distance = sensor thickness
 - number of produced electrons-holes pairs
 initial signal
- How to maintain high efficiency though whole lifetime?
 - Thin detector: reduce probability of electronhole pairs being trapping by bulk defects by decreasing inter-electrode distance
 - BUT -> smaller signal
 - Increase bias voltage to keep bulk depleted
 - BUT -> higher power dissipation

- Electrodes not placed on the surface but columns inserted in the bulk
- Electrons-holes pairs drift towards columns
- Inter-electrode distance decoupled from sensor thickness -> inter-electrode distance can be reduced without decreasing the signal!

Pros:

Lower depletion voltage

- Faster charge collection
- Smaller trapping probability

• Very complex production process

33rd RD50 workshop 28/11/2018

Radiation hardness!!

3D Design open issues

- Collected charge, production yield
- Hit occupancy, especially for forward tracks

- Pixel size?
 - IBL: standard FE-I4 50x250 µm² with two n+ columns, 67 µm inter-electrode distance
 - HL-LHC options:
 - 50x50 μm²: easier to produce, 35 μm inter-electrode distance
 - 25x100 μm²: better resolution in φ
 - 2 n+ columns (2E): smaller inter-electrode distance (28 µm) but difficult to fit solder bump inside
 - 1 n+ columns (1E): less problematic, but radiation hard enough with 53 µm inter-electrode distance?

50μm P col. Bump pad 33μm N col. 50x50 C/E Bump pad N col. 25x100 D

Giulia Giannini

26/26

$50x50 \ \mu m^2$ production yield

FAE

- Overall promising yield of 50x50 μm² design
 - Breakdown voltage > 25 V and Leakage current < 10 μA
- Large number of sensors available for characterisation
 - Including also 25x100 μm^2 geometries both 1E and 2E

- Next steps towards the first RD53A 3D modules:
 - Removing of the temporary metal (done)
 - Electroless UBM at CNM -> done for Wafer 4, ongoing on 2 more wafers
 - Flip-chip to RD53A chips at IFAE
 - Assembly and wire-bonding to SCC
 - Characterisation with the YARR system

Giulia Giannini

50x50µm² - 5e15 n_{eq}/cm² KIT - Residuals

Cluster Size 1

Cluster Size 2

25x100 μm^2 1E - 5e15 n_{eq}/cm^2 KIT - Residuals

Cluster Size 1

Cluster Size 2

Giulia Giannini

50x50µm² - 1e16 PS - Tuning linear FE

Giulia Giannini

30/26

50x50µm² - 1e16 PS - Tuning differential FE

Giulia Giannini