

Detector processing on p-type MCz silicon using atomic layer deposition (ALD) grown aluminium oxide

J. Ott^{1,2}, A. Gädda^{1,3}, M. Golovleva^{1,4}, T. Naaranoja¹, L. Martikainen¹, E. Brücken¹, V. Litichevskyi¹, A. Karadzhinova-Ferrer⁵, M. Kalliokoski⁵, P. Luukka¹, J. Härkönen⁵, H. Savin²

¹ Helsinki Institute of Physics, Helsinki, Finland
² Aalto University School of Electrical Engineering, Espoo, Finland
³ Advacam Ltd., Espoo, Finland
⁴ Lappeenranta University of Technology, Finland
⁵ Ruder Boskovic Institute, Zagreb, Croatia
33rd F

33rd RD50 Workshop, 26.-28.11.2018

Outline

- Recap on Al₂O₃ and ALD
- Processing
 - Devices, layout
 - Process flow
- Characterization
 - IV
 - CV, TCT
- Summary
- Outlook

Why aluminium oxide?

- Increased use of p-type Si in detectors for high-luminosity environments
- Higher mobility of electrons in Si \rightarrow segmentation of n+ implants
- SiO₂ with its positive oxide charge does not insulate the segments without additional p-spray/p-stop implant

Aluminium oxide (Al₂O₃)

- High negative charge (~1e12 cm⁻²)
- Can be deposited at low temperature
- Good dielectric properties allows for higher oxide capacitances

Why aluminium oxide?

Atomic layer deposition

- A film is deposited by alternate pulsing of gaseous precursors over a substrate
- No gas-phase reactions, purges between the precursor pulses \rightarrow self-limiting surface reactions
- High film uniformity over relatively large areas
- Film growth slow and occuring in cycles → very thin layers can be grown with good accuracy and repeatability

Atomic layer deposition

Timeline / "research flow"

2016

Characterization methods

Talk at RD50 in Krakow

• Effect of Al₂O₃ deposition temperature

2017

- Effect of oxygen precursor in ALD on Al₂O₃ properties
- Co-60 gamma irradiation

2018

- Pixel processing
- Co-60 gamma irradiation
- Include surface passivation and/or HfO₂ as capping layer

Considerations on Al₂O₃ in processing

Many useful insights and characterization methods from photovoltaic industry and research

... however, transfer to detector processing requires adaption

- Film thickness
- Thermal treatments (metal sintering, firing)
- Oxygen precursor in ALD
 - The best-known process for Al₂O₃ consists of trimethylaluminium (TMA) and H₂O
 - Best passivation quality (in terms of lifetimes), best diode breakdown properties
 - ... but large blister-like delamination areas unusable in pixelated devices*
 - Addition of ozone improves performance

Structures 2017

2018

Structures

• Pixel detectors:

- AC-coupled pixel sensor, $100 \times 150 \mu m$ pitch to match PSI46dig
- DC-coupled pixel sensor, $50 \times 50 \ \mu m$ pitch to match RD53A
- Pad diodes
- MOS capacitors
- Resistor reference structures

 \rightarrow easier testing of certain properties

RD53 sensor

PSI46dig sensor

Characterization

- Pad sensors
 - IV
 - CV
 - TCT with red and IR laser
- MOS capacitors
 - CV

As-processed, and irradiated up to ~1 MGy with Co-60 γ rays at RBI*

* <u>https://www.irb.hr/eng/Research/Divisions/Division-of-Materials-</u> <u>Chemistry/Radiation-Chemistry-and-Dosimetry-Laboratory</u>

Red laser TCT

2017 batch

IR-TCT

Observations

- Reduction of N_{eff} and subsequent type inversion with increasing gamma ray dose
 - "clean", no double junction effect
- The same phenomenon is visible also for 2017 batch, but there not up to SCSI due to lower starting resistivity = higher doping
- Leakage current scales well with gamma ray dose
- Does not appear to affect charge collection significantly

Acceptor removal? Donor creation? Hole trapping due to Al₂O₃?

MOS capacitor CV

2017 batch

29.11.2018 21

MOS capacitor CV

V_{fb} shifts towards negative: positive charge formation as expected,

but Q_{eff} remains negative

- Strong frequency dependence
- V_{fb} measured starting in inversion does not show large change after first irradiation dose, but hysteresis increases

 \rightarrow indicates formation of positive mobile charge, while Q_f is less affected

Changes in bulk doping need to be taken into account for accurate charge extraction

For charge extraction from voltage termination structure simulations, cf. <u>Elena's talk</u>

Summary

- Al₂O₃ films were successfully integrated into a 6" Si detector process as replacement for the SiO₂ + p-spray/p-stop entity
- Devices are well characterizable by standard methods: CV, IV, TCT
- These results tell more about the MCz Si bulk properties than the insulator oxide
 - Positive space charge building up due to irradiation, may lead to type inversion depending on initial doping concentration
 - Interpretation of MOS capacitor CV curves for extraction of oxide charge requires some considerations/assumptions and comparison with pad CV data

What next

- Further characterization of pixel sensors
 - Flip-chip bonding
 - Evaluation of the assembly in the lab and at test beam
- Annealing..?
 - So far, no anneal after gamma irradiation, all measurements at RT
- Irradiation with p, n
- Defect spectroscopy (DLTS) to study mechanism behind acceptor compensation

Acknowledgements

<u>RBI Radiation chemistry and dosimetry laboratory &</u> <u>gamma irradiation facility</u>

Micronova Nanofabrication Centre

Helsinki Detector Laboratory

MICRONO\

J. Ott acknowledges the Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of Science and Letters for research funding

SUOMALAINEN TIEDEAKATEMIA

Backup

Considerations on Al₂O₃ in processing

 \rightarrow "blistering" of Al₂O₃ film as consequence of H segregation to interface \rightarrow blisters can be of the same size as pixels!

Proton microprobe

At RBI IBIC facilities, cf. Aneliya's talk

PSI46dig-geometry AC-coupled pixel sensor with Al2O3 insulator

https://www.irb.hr/eng/Research/Divisions/Division-of-Experimental-Physics/Laboratory-for-ion-beam-interactions