

Overview of design and evaluation of depleted CMOS sensors within RD50

<u>E. Vilella</u>^{a*}, O. Alonso^b, T. Bergauer^c, R. Casanova^d, G. Casse^{a,e}, A. Diéguez^b, M. Franks^{a,e},
 S. Grinstein^d, C. Irmler^c, R. Marco-Hernandez^f, J. M. Hinojo^g, N. Massari^e, S. Moreno^b,
 F. Muñoz^g, R. Palomo^g, S. Powell^a, H. Steininger^c, J. Vossebeld^a, C. Zhang^{a,e}

^aUniversity of Liverpool ^bUniversity of Barcelona ^cHEPHY ^dIFAE ^eFBK ^fIFIC ^gUniversity of Seville

*<u>vilella@hep.ph.liv.ac.uk</u>

RD50-MPW1 – Overview

General details

- MPW in the 150 nm HV-CMOS process from LFoundry
- To test the technology aspects of this process and novel designs
- Submitted in November 2017, received in April 2018
- Fabricated on wafers with 2 different substrate resistivities
 → 500 Ω·cm (40 samples) and 1.9k Ω·cm (80 samples)

MPW contents

- **1)** Tests structures for e-TCT and sensor capacitance measurements
- 2) Matrix of depleted CMOS pixels with 16-bit counter
 - ➔ 26 x 52 pixels
 - → 75 µm x 75 µm pixel area
- 3) Matrix of depleted CMOS pixels with FE-I3 style readout
 - → 40 x 78 pixels
 - ightarrow 50 μ m x 50 μ m pixel area
- Analog and digital readout embedded in the sensing area
- Completely independent matrices
- Careful design with LF15A V1.2.0, the first design kit to include
 - ➔ Models to simulate the sensing diodes
 - ➔ Proper verification

RD50-MPW1 – Test structures

- Pixel size is 50 μm x 50 μm
- No readout electronics

RD50-MPW1 – I-V

- I-V of <u>central pixel</u> of test structure for e-TCT
- Measurement done using a probe station with sensor in complete darkness
- V_{BD}~55-60 V as expected from design, but I_{LEAK} is too high
- Doing TCAD simulations and getting support from the foundry to understand this problem
- The sensors are fully functional (see presentation by I. Mandic in this RD50 WS)

RD50-MPW1 – DAQs

2 sets of DAQs

- 1 developed by IFAE (available from a previous design), for more details see presentation by S. Terzo in TWEPP 2018
- 1 developed by IFIC/HEPHY (developed within the CERN-RD50 collaboration, in progress)
- For more details about the IFIC/HEPHY DAQ, see presentation by R. Marco-Hernandez in 32nd RD50 WS

RD50-MPW1 – Measurements

- Fairly good agreement between measured and simulated results
- Larger mismatch in those DACs that carry smaller currents (probe with 1M Ω input resistance takes current away and modifies the measurement)
- Measurements done with IFAE DAQ
- With IFAE DAQ, I_{LEAK} of matrix is also large at very small voltages (I_{LEAK} = 25 mA @ HV = 2 V)

<u>Aims</u>

- Replicate the breakdown voltage and leakage current measured with RD50-MPW1
- Understand what is causing the large leakage current

We are doing TCAD simulations to

- Study the effect of increasing the spacing between PWELL (cathode @ HV) and NWELL (anode)
 - → Simulation of a range of PWELL/NWELL spacings

- Study the effect of pixel corners (90 degrees, 45 degrees and rounded) on electric field strength
- Study the effect of chip guard ring configuration on breakdown voltage and leakage current

Simulation of a range of PWELL/NWELL spacings

- Increasing the spacing between the PWELL (cathode @ HV) and NWELL (anode @ V_{DN})
 - ➔ Magnitude of electric field decreases
 - ➔ Breakdown voltage increases as expected
- We also think there is some lateral diffusion

3D simulation of electric field at pixel corners

- Left: Top-down and front views of the electric field of a pixel with square corners
- <u>Right</u>: Simulation area (~ 1/4 of the pixel) chosen to minimize simulation time (> 1 week)
- Red lines are junction interfaces; white lines are depletion region limits

3D simulation of electric field at pixel corners

- Left: Top-down view of the electric field of a pixel with square corners
 - → Pink dashed lines represent cut lines for front-views
- <u>Right</u>: Front-views of non-corner and square corner slices of the pixel
 - → High electric field at square corners, which generates premature breakdown voltage

3D simulation of electric field at pixel corners

- Left: Pixel with square corners
- Right: Pixel with rounded corners
 - → Running simulation of electric field of a pixel with rounded corners at the moment
- Colour of the simulations represents the doping concentration

Simulation of guard rings

- <u>Top</u>: Chip edge of RD50-MPW1 contains a large bias ring
- Bottom: Chip edge of a future RD50-MPW2 with a possible improved guard ring
 - → Guard rings typically stop the pixel depletion region from coming into contact with the chip edge
- Colour of the simulations represents the doping concentration

Simulation of guard rings with edge defects

- Edge defects introduced during dicing
- Noschis model (4 trapping levels): edge defects form a depletion region that can contribute to the leakage current
- <u>Top</u>: Simulation of guard rings with edge defects at -50 V
 - → Pixel/edge depletion regions do not merge
- <u>Centre</u>: Simulation of guard rings with edge defects at -70 V
 - → Pixel and edge depletion regions merge
 - ➔ Pixel depletion region touches the edge of the chip and can increase the leakage current
- <u>Bottom</u>: Same simulation as in centre, but plotting the electron current density instead of the doping concentration
 - NWring 'collects' leakage current when the pixel/edge depletion regions merge

250

Comparison of TCAD simulated values with measured leakage current

- In RD50-MPW1, we have:
 - 1) Pixels with PWELL (cathode @ HV) and NWELL (anode @ $V_{\text{DN}})\,$ spacing of 3 μm
 - 2) Pixels with 90 degrees corners
 - 3) A large PWELL bias ring around the sensors instead of multiple NWELL and PWELL guard rings, as typically done in planar silicon sensors
- 1), 2) and 3) contribute to the leakage current, <u>but do not explain the large measured values</u>
- The foundry is aware of this situation. We are getting support from them.
- We suspect the biggest contribution to the large leakage current comes from <u>filling layers</u> added during the post-processing stage
- The filling layers generate conductive paths with a significant electron current density that contributes to the sensor leakage current. We are running TCAD simulations to fully understand this problem.
- The filling layers can be prevented at the design stage with blocking layers

Need to submit a test MPW

- We think it is too risky to submit the planned, large and expensive RD50-ENGRUN1 as our next step
- We think it is a lot safer to submit a small and cheap test MPW (RD50-MPW2) before submitting RD50-ENGRUN1
- TCAD simulations and chip design for RD50-MPW2 are quite advanced

RD50-MPW2 – Floorplan and pricing (1)

Pricing condition:

- a) MPW pricing condition
 - Charged area: 6 mm² (minimum area)

F

0

S

- Price: 900 €/mm²
- b) Pricing for 2 customer specific substrates
 - 1000 € (80 dies in total)

TOTAL PRICE for a) and b) is 6,400 € (before VAT)

RD50-MPW2 – Floorplan and pricing (2)

1000 € (80 dies in total)

TOTAL PRICE for a) and b) is 9,400 € (before VAT)

RD50-MPW2 – Design

MPW contents

- 1) Tests structures for e-TCT
- 2) Matrix of depleted CMOS pixels with analog readout
 - ➔ 15 x 15 pixels
 - ightarrow 60 μ m x 60 μ m pixel area
 - ➔ 2 different flavours of fast pixels
- 3) Matrix of depleted CMOS pixels with FE-I3 style readout
 - ➔ Same as 2), but with digital readout
- Analog and digital readout embedded in the sensing area
- Completely independent matrices
- For more details about the pixels, see presentation by C.
 Zhang in 32nd RD50 WS

Motivation

 Fabricate each step of the detector separately (sensors, analog readout and digital readout) to measure and study each part independently.

RD50-ENGRUN1

<u>Aims</u>

- Improve the current time resolution of depleted CMOS sensors by a factor 10 with dedicated RO circuits
- Implement new sensor cross-sections
- Study pre-stitching options to increase the device area beyond the reticle size limitation
- Improve the current radiation tolerance with careful sensor design and backside processing
- All the work we are doing with RD50-MPW2 is a preparation for submitting RD50-ENGRUN1

RD50-ENGRUN1 – Matrix 1

- The design of the sampling pixel is quite advanced
- The design of a new control unit is also progressing well
- We can achieve timing resolutions of around 2 ns (simulated)
- For more details about the sampling matrix, see presentation by O. Alonso in LCWS2018

- We have started a project to develop depleted CMOS sensors within CERN-RD50
- We have designed and fabricated a first test MPW (RD50-MPW1):
 - RD50-MPW1 is under test at the moment
 - I-V measurements show a V_{BD} around 55-60 V as expected from design, but I_{LEAK} is too high
 - We are doing TCAD simulations to understand this problem and study how we can improve the design of the sensor
- We stress the need to submit a small and cheap test MPW (RD50-MPW2) before submitting the planned, large and expensive RD50-ENGRUN1:
 - Design and TCAD simulations for RD50-MPW2 are quite advanced
 - RD50-MPW2 will contain passive diodes and 1 or 2 small matrices with analog or analog and digital readout electronics
 - Before submitting RD50-MPW2, we need to find the funding to cover the prototyping costs
- The design of the large RD50-ENGRUN1 is running in parallel

Thank you for your attention !

