

Electrically active defects in unirradiated p-type silicon detectors fabricated by different vendors

<u>Cristina Besleaga Stan</u>, Roxana Radu, Raluca Negrea and Ioana Pintilie National Institute of Materials Physics, Bucharest-Magurele, Romania

New structures based on p-type silicon

Key properties

- Gain very sensitive to p+ layer doping and process parameters
- Gains of up to 100 achieved giving excellent timing resolution of 26 ps for thin LGADs
- Currently the best technology for achieving excellent timing measurement for mip will be employed at ATLAS and CMS experiments after the upgrade

Limitations:

- Radiation hardness problem of acceptor removal which decreases the gain with fluence (intensive search for solution: Ga, C and understanding removal mechanism)
- Regions without the gain around the electrodes do not have gain fill factor improvement

Key properties

- Different substrates often limited by vendor up to full depletion of 300 mm
- Excellent position resolution

Limitations:

- Radiation hardness problem of acceptor removal which changes detector performance
- Speed for timing applications is not yet optimal
- SOI substrates or different other designs/processes including "Shallow Trench Isolation" affect charge collection

.. optimizing for

- Radiation hardness
- Time resolution
- Cost effectiveness

Investigated unirradiated p-type samples

20 different p-type bulk Boron doped STFZ diodes manufactured by different companies:

- Hamamatsu (2)
- Infineon Technologies (6)
- Fondazione Bruno Kessler (FBK) (12)

LGADs

14 LGAD structures produced on STFZ silicon by

- Fondazione Bruno Kessler (FBK) with defect engineered gain layers - implantations of B or Ga alone and co-doped with C

Nr	Sample	Depletion voltage (V _{dep})	Doping concentration N _{eff} (cm ⁻³)	Leakage Current Normalized at 20°C (A)	Area (cm ²)	Current density (A/cm ²)
1	VPX18592	180	4.42×10^{12}	3.28x10 ⁻⁹	0.25	1.48x10 ⁻⁸
2	VPX21779	140	4.8 x10 ¹²	2.51x10 ⁻⁹	0.065	4x10 ⁻⁸
3 a	VE711408-09	150	$2.5 \text{ x} 10^{12}$	6.22x10 ⁻⁸	0.25	2.488x10 ⁻⁷
3 b	VE711408-24	240	3.5 x 10 ¹²	8.83x10 ⁻⁹	0.25	3.532x10 ⁻⁸
4 a	VE543425-06	53	$2 \ge 10^{12}$	2.4x10 ⁻⁸	0.25	9.6x10 ⁻⁸
4 b	VE543425-10	60	$2.2 \text{ x } 10^{12}$	1.49x10 ⁻⁸	0.25	5.96x10 ⁻⁸
5	VL740654-18	No saturation>500V	3.5 x 10 ¹²	Max at 500V 1x10 ⁻⁹	0.065	1.538x10 ⁻⁸
6	VE525852-01	66	$2 \ge 10^{12}$	2.32x10 ⁻⁸	0.25	9.28x10 ⁻⁸

PiN diodes – Hamamatsu

Depletion voltage (V)	180
Leakage Current at 20°C	3.28x10 ⁻⁹
(A)	
Area (cm ²)	0.25
Width (um)	214
LC/vol (A/cm ²)	1.48x10 ⁻⁸
and the second se	

- there are several intrinsic defects in the volume of the samples generated during the growth or processing of the wafers
- the amount of trapping centers for holes much larger than of those for electrons
- H(217K) a trap for holes is the defect found in the highest concentration, also not homogeneous distributed in the bulk (more near the n^+ contact)

2050

PiN diodes – Infineon

- Large differences in defect concentrations from sample to sample
- Large variations in Leakage Current H(217K) could be the cause

Characterization of H(217K) defect

- From maxima analyses (activation energy and apparent capture cross section)

- From transient analyses at constant temperatures:
 - direct measurement of the capture cross section for holes
 - Activation energy, entropy factor

Method	Activation energy	Capture cross section $\sigma_p \ (cm^2)$
	E _a (eV)	at the peak temperature
Maxima analysis	0.42	9.1x10 ⁻¹⁶
Transient and capture measurement at (217K	0.437	3×10^{-17} $X_{\rm T} = 30.3$

Schockley-Read-Hall - statistics used to calculate the impact the detected defects have on the device electrical performance

$$\Delta LC(T) = q \times A \times d \times N_t \frac{e_n(T)e_p(T)}{e_n(T) + e_p(T)},$$
$$e_n(T) = v_{th,n}(T) \times \sigma_n(T) \times N_C \times \exp\left(-\frac{E_c - E_t}{k_B T}\right),$$
$$e_p(T) = v_{th,p}(T) \times \sigma_p(T) \times N_V \times \exp\left(-\frac{E_t - E_V}{k_B T}\right),$$

$$N_{eff}(T) = N_d + \sum_i p_{t,i}^{donor}(T) - \sum_j n_{t,j}^{acceptor}(T).$$

$$\Delta N_{eff}^{acceptor}(T) = -n_t^{acceptor}(T) = -N_t^{acceptor} \frac{e_p(T)}{e_n(T) + e_p(T)},$$

$$\Delta N_{eff}^{donor}(T) = +p_t^{donor}(T) = +N_t^{donor} \frac{e_n(T)}{e_n(T) + e_p(T)}.$$

H(217K) defect – donor in lower part of the Si gap

- activation energy of **0.437 eV**
- Temperature dependent capture cross section for holes (direct measurement)
- Large entropy factor $(X_T = 30.3)$ –strong interaction of the defect with the Si lattice (as e.g. Au in silicon)
- presuming that H(217K) determine the value of LC, the capture cross section for electrons should be $\sigma_n(T) = 2.0 \times 10^{-14} \text{ cm}^2$

 \Rightarrow large impact LC, not charged at 20⁰ C

FBK UFSD2 W1 B-0.98L	Wafer 1, the gain layer implanted with B with dose 0.98 (Low diffusion-2% less)
FBK UFSD2 W6 BC-1.02 HL	Wafer 6, the gain layer implanted with B with dose 1.02(High diffusion-2% more)
	and co-implanted with carbon-low diffusion
FBK UFSD2 W8 B-1.02H	Wafer 8 the gain layer implanted with B with dose 1.02 (High diffusion-2% more)
FBK UFSD2 W14 G-1.04L	Wafer 14, the gain layer implanted with gallium with dose 1.04 (Low diffusion)
FBK UFSD2 W18 G-1.08L	Wafer 18, the gain layer implanted with gallium with dose 1.08 (Low diffusion)
FBK UFSD2 W15 GC-1.04LL	Wafer 15, the gain layer implanted with gallium with dose 1.04 (Low diffusion) and
	co-implanted with carbon-low diffusion

RD50

PiN diodes -FBK

Pairs of 1x1mm² PiN-LGAD

p - type substrate

[B]: $(1.8 \div 2.6) \times 10^{12} \text{ cm}^{-3}$

	Sample	Comments	Depletion	Leakage	Area(mm ²)-	N _{eff} from
			voltage (V _{dep})	Current	thickness (µm)	CV(cm ⁻³)
				Normalized at		
				20°C (A)		
1	FBK UFSD2 W1 B-0.98L	4 ring	3.48	3.03x10 ⁻¹¹	1 mm ² - 50 μm	1.83×10^{12}
2	FBK UFSD2 W1 B-0.98L	2 rings	3.42	4.03x10 ⁻¹¹	1 mm ² - 50 μm	1.79 x10 ¹²
3	FBK UFSD2 W6 BC-1.02 HL	4 rings	3.40	3.35x10 ⁻¹¹	1 mm ² - 50 μm	1.78 x10 ¹²
4	FBK UFSD2 W6 BC-1.02 HL	2 rings	3.49	2.80x10 ⁻¹¹	1 mm ² - 50 μm	1.83 x10 ¹²
5	FBK UFSD2 W8 B-1.02H	2 rings	3.48	2.18x10 ⁻¹¹	1 mm ² - 50 μm	1.83 x10 ¹²
6	FBK UFSD2 W8 B-1.02H	4 ring	3.38	3.55x10 ⁻¹¹	1 mm ² - 50 μm	1.77 x10 ¹²
7	FBK UFSD2 W14 G-1.04L	4 rings	3.51	7.54x10 ⁻¹⁰	1 mm ² - 50 μm	1.84 x10 ¹²
8	FBK UFSD2 W14 G-1.04L	2 rings	3.40	1.09x10 ⁻⁹	1 mm ² - 50 μm	1.78 x10 ¹²
9	FBK UFSD2 W18 G-1.08L	4 rings	3.95	1.22x10 ⁻⁹	1 mm ² - 50 μm	2.07 x10 ¹²
10	FBK UFSD2 W18 G-1.08L	2 rings	4.05	2.81x10 ⁻⁹	1 mm ² - 50 μm	2.15 x10 ¹²
11	FBK UFSD2 W15 GC-1.04LL	4 rings	4.29	4.71x10 ⁻⁹	1 mm ² - 50 μm	2.25 x10 ¹²
12	FBK UFSD2 W15 GC-1.04LL	2 rings	4.90	6.09x10 ⁻⁹	1 mm ² - 50 μm	2.62 x10 ¹²

-diodes processed on W1, W6 and W8 wafers has lower LC then those processed on W14, W15 and W18 wafers

LGAD diodes -FBK

10 ²³ -	W1-Boron-low diffusion W6-Boron high + Carbon low W8-Boron-low diffusion W14-Gallium-low 1.02 W15-Gallium-low + Carbon low W15-Gallium-low 1.04		Sample	Comments	Depletion voltage of the gain layer(V)	Full depletion voltage of sensor(V)	Leakage Current Normalized at 20°C (A) (full depletion)	Area(mm²)- thickness (mm)	N _{eff gain layer} from CV(cm ⁻³)	N _{eff bulk} from CV(cm ⁻³)
<u> </u>	full depletion voltage	1	FBK UFSD2 W1 B-0.98L	4 ring	22	25	7.27x10 ⁻¹¹	1 MM- 50 μm	5.9x10 ¹⁶	1.83x10 ¹²
L) 201 10 ²¹	of the sensor	2	FBK UFSD2 W1 B-0.98L	2 rings	22	25	6.42x10 ⁻¹¹	1 MM- 50 μm	5.9x10 ¹⁶	$1.79 \ x10^{12}$
		3	FBK UFSD2 W6 BC-1.02 HL	4 rings	22	25	2.45x10 ⁻¹⁰	1 MM- 50 μm	5.9x10 ¹⁶	1.78 x10 ¹²
		4	FBK UFSD2 W6 BC-1.02 HL	2 rings	22	25	2.49x10 ⁻¹⁰	1 MM- 50 μm	5.9x10 ¹⁶	$1.83 \text{ x} 10^{12}$
	Depletion voltage	5	FBK UFSD2 W8 B-1.02H	2 rings	22	25	4.72x10 ⁻¹¹	1 MM- 50 μm	5.9x10 ¹⁶	$1.83 \text{ x} 10^{12}$
	of the gain layer	6	FBK UFSD2 W8 B-1.02H	4 ring	22	25	6.75x10 ⁻¹¹	1 MM- 50 μm	5.9x10 ¹⁶	$1.77 \text{ x} 10^{12}$
	1 10 100	7	FBK UFSD2 W14 G-1.04L	4 rings	30	35	1.54x10 ⁻⁶	1 MM- 50 μm	3.95x10 ¹⁶	$1.84 \text{ x} 10^{12}$
	Voltage (V)	8	FBK UFSD2 W14 G-1.04L	2 rings	30	35	1.72x10 ⁻⁶	1 MM- 50 μm	3.95x10 ¹⁶	$1.78 \text{ x} 10^{12}$
		9	FBK UFSD2 W18 G-1.08L	4 rings	30	35	1.2x10 ⁻⁶	1 MM- 50 μm	3.95x10 ¹⁶	2.07 x10 ¹²
		10	FBK UFSD2 W18 G-1.08L	2 rings	30	35	5.1x10 ⁻⁵	1 MM- 50 μm	3.95x10 ¹⁶	2.36 x10 ¹²
		11	FBK UFSD2 W15 GC-1.04LL	4 rings	30	35	2.4x10 ⁻⁶	1 MM- 50 μm	3.95x10 ¹⁶	2.25 x10 ¹²
		12	FBK UFSD2 W15 GC-1.04LL	2 rings	30	35	2.04x10 ⁻⁸	1 MM- 50 μm	3.95x10 ¹⁶	$2.62 \text{ x} 10^{12}$

Similar to PiN diodes, also the LGADs processed on W1,W6 and W8 wafers has lower LC then those processed on W14, W15 and W18 wafers

PiN diodes -FBK

Schockley-Read-Hall - statistics used to calculate the impact the detected defects have on the device electrical performance

$$\Delta LC(T) = q \times A \times d \times N_t \frac{e_n(T)e_p(T)}{e_n(T) + e_p(T)},$$

$$e_n(T) = v_{th,n}(T) \times \sigma_n(T) \times N_C \times \exp\left(-\frac{E_c - E_t}{k_B T}\right),$$

$$e_p(T) = v_{th,p}(T) \times \sigma_p(T) \times N_V \times \exp\left(-\frac{E_t - E_V}{k_B T}\right),$$

$$N_{eff}(T) = N_d + \sum_{i} p_{t,i}^{donor}(T) - \sum_{j} n_{t,j}^{acceptor}(T).$$

$$\Delta N_{eff}^{acceptor}(T) = -n_t^{acceptor}(T) = -N_t^{acceptor} \frac{e_p(T)}{e_n(T) + e_p(T)},$$

$$\Delta N_{eff}^{donor}(T) = +p_t^{donor}(T) = +N_t^{donor} \frac{e_n(T)}{e_n(T) + e_p(T)}.$$

H(250K) trapping parameters: $E_a = 0.52 \ eV$, $\sigma_p = 3x10^{-15} \ cm^2$ (direct measurement constant with T)

PiN diodes -FBK

c)

H(217K) Concentration

⇒ large impact on LC and ~ 53% of its concentration is positively charged at 20⁰ C

Un-irradiated LGAD sensors

(a) TEM image at low magnification showing the structure of W6 sample(LGAD implanted with B&C) and (b) EELS spectra extracted from the areas inside of green circles.

Examples on FBK STFZ Si with gain layer implanted with:B and co-implanted with C

and

- Ga and co-implanted with C.

a) HRTEM images at the SiOx-Si interface and (b) a detail from the Si; (c) FFT pattern corresponding to the image (a).

The HRTEM analyses on samples implanted with boron, gallium or co-implanted with carbon reveal a continuous pattern of high resolution fringes, without any obvious structural defects.

• we found several electrically active defects in as-grown/processed samples manufactured by different vendors

Defect/impact	Activation	Capture cross	Capture cross	
	energy (eV)	section for holes at	section for	
		$20^{0} \mathrm{C} \mathrm{(cm^{2})}$	electrons at 20° C	
			(cm ²)	
H(150K)	0.31 eV	7x10 ⁻¹⁵		
H(217K)	0.437 eV	1.25x10 ⁻¹⁶	$2.0 \mathrm{x} 10^{-14} \mathrm{cm}^2$	Common to p-type Si
Impact on LC		(XT=30.3)		
H(250K)	0.52 eV	3x10 ⁻¹⁵	$9x10^{-14} cm^2$	Most likely due to accidenta
Impact on both				impurification of the wafers
LC and Neff				

Near future research activities

- Proceed with DLTS measurements on LGAD samples produced by FBK (DLTS not available for the moment)
- Irradiation of the existing defect engineered FBK sensors (neutrons and/or protons) this year with 1MeV neutrons

• Start investigation on EPI PiN pad samples (STFZ has large amount of processing induced defects in different concentrations even when processed on wafers from the same batch)

Thank you for your attention !

