

Options and constraints for passive sensor fabrication at CMOS foundries

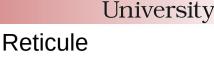
Daniel Muenstermann

Motivation

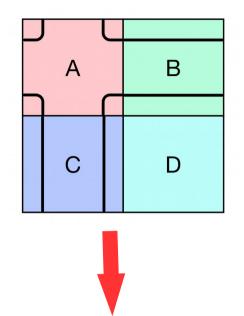
Radiation-hard silicon sensors are used in larger and larger areas

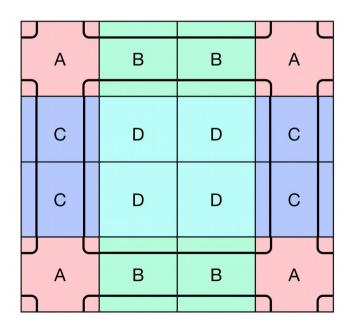
Lancaster 🌌

Iniversi


- Full tracker replacements for HL-LHC, FCC trackers...
- Calorimetry see e.g. HGCAL and as high-granularity direct sensors
- Timing detectors (e.g. HGTD)
- cost-efficiency of increasing importance
 - visible in efforts to establish production on 8" wafers
- Why produce something in CMOS fabs?
 - Large throughput (typical fab capacity: some 10.000 wafers/month)
 - typical detector size: Pixel o(1.000) wafers, Strips o(10.000) wafers
 - Established and very thorough QA/QC protocols
 - Usage of 8" or even 12" wafers
 - Has the potential to be significantly (a factor) cheaper than established sensor vendors for large volumes
 - Iarge wafers
 - very few mask steps compared to a standard CMOS process
 - "huge" feature sizes, i.e. cheap/coarse masks and visible light lithography possible

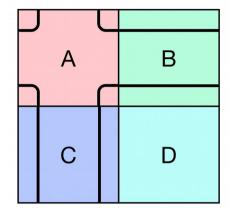
Drawbacks/challenges


- Reticule-based lithography
 - typical reticule sizes are ~20mm by 20mm (some larger)
 - if you really need a larger sensor, you need to compose it, i.e. "stitch"
 - not all fabs offer stitching actually probably very few (examples: TowerJazz, LFoundry)
 - classically: large pixel matrix (D), edges (B, C), corners (A)
 - however, apparently equal size sub-reticules are preferred for alignment precision
 - the more/the smaller sub-reticules you have, the more "shots" the stepper will need – the longer the lithography will take and the more costly it will get
 - ideally (cost-wise) create a detector from singlechip modules
 - will always fit on a reticule


Passive CMOS sensors

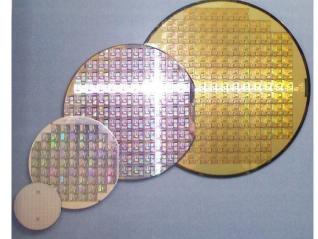
- makes (module) testing easier
- more items to handle, but identical type and comparatively small size might enable the use of industrial pick+place machines

Lancaster 283

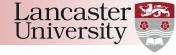


on wafer

Drawbacks/challenges

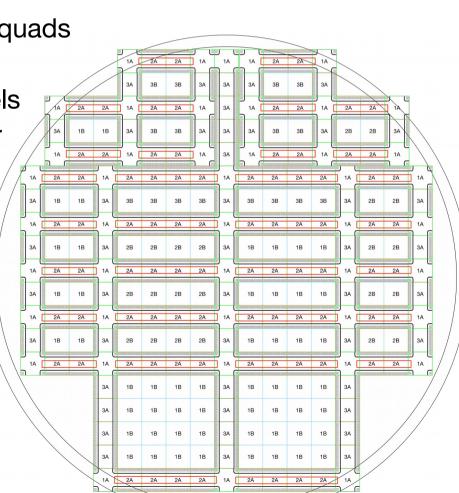

- More reticule-based issues
 - usually, reticules cannot be rotated sometimes wafers can, but maybe just by 180 degrees
 - usual "matrix reticules" (A) only contain identical pixels what about "special" pixels, e.g. long/ganged pixels?
 - have more than one mask set
 - have more than one metal mask
 - use UBM metal (full-size contact mask!) to connect pixels
 - fabs are used to placing their own test/monitoring structures into the dicing streets, i.e. at the edge of the reticule
 - doesn't work like this for stitched sensors, be sure to discuss options with foundry
 - your own test structures have to fit in B, C or D much less options than for a "usual" contact-lithography wafer, where one has ample space around the main sensor tiles

Drawbacks/Challenges


- Substrates
 - Default is (M)Cz wafers, mostly p-type, with 10-20 Ohm*cm for HV-CMOS – too low for passive sensors
 - In CIS (CMOS Imaging Sensors) processes, often higher resistive substrates are offered – or epi/SOI
 - Usually too low for passive sensors anyway, and epi not useful – high-resistive (kOhm*cm) substrates are necessary
 - Some fabs unwilling to produce on high-resistive substrates
 - Procurement usually done by the fab wafer suppliers seem to be a highly regarded trade secret
 - define requirements, fab will look for suitable wafers
 - high-res default seems to be MCz, but there are some afterthoughts in RD50 about p-type MCz...
 - 8" FZ wafers exist and can be procured (lead time o(10 weeks)) large quantities would have to be clarified in advance
 - while thinning down to 50µm is standard and "for free", backside implant and metallisation are not
 - post-processing? special process step?

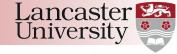
Lancaster 🌌

University



Advantages/Features

- Turnaround times: typically 3 months after submission
 - might be slower if processes are heavily modified or very customer-specific
 - the more standard you can go, the faster
- QA/QC
 - CMOS plants are probably the best controlled/supervised/QCed production sites anywhere
 - ideal if underlying process is inteded for automotive/aerospace (i.e. not consumer)
 - stay as close to standard process as possible
- Wafer size
 - 8" or 12"
- Substrate thickness
 - thinning down to 50µm standard and without charge (caveat backside!)
- Features: MIM capacitors (AC coupled pixels), MOhm resistors
- Price for large volumes
 - Classical 8" CMOS wafers with are few 1000 EUR/wafer, with reduced number of processing steps o(several 100 EUR) could be reachable
 - With stitching probably a bit more expensive, but still much cheaper per area than classical sensor vendors producing on 4" and 6" wafers


Ongoing activities

- Several monolithic CMOS sensor productions on high-resistive substrates with various foundries ongoing
- Beyond that, ATLAS and CMS are pursuing a joint submission to assess the feasibility of passive planar pixel sensor production on 8" wafers at a CMOS foundry
 - RD53A compatible singles, doubles and quads
 - DC and AC coupling
 - 50µm by 50µm and 25µm by 100µm pixels
 - will also have stitched strips on the wafer
- Timeline: submission hopefully in December, wafers back in early April
- Once we know if/how well (yield) that worked, we should probably follow up also within RD50...

Lancaster 🌌

University

Next RD50 workshop at Lancaster University

Some organisational points

Daniel Muenstermann

Next RD50 workshop

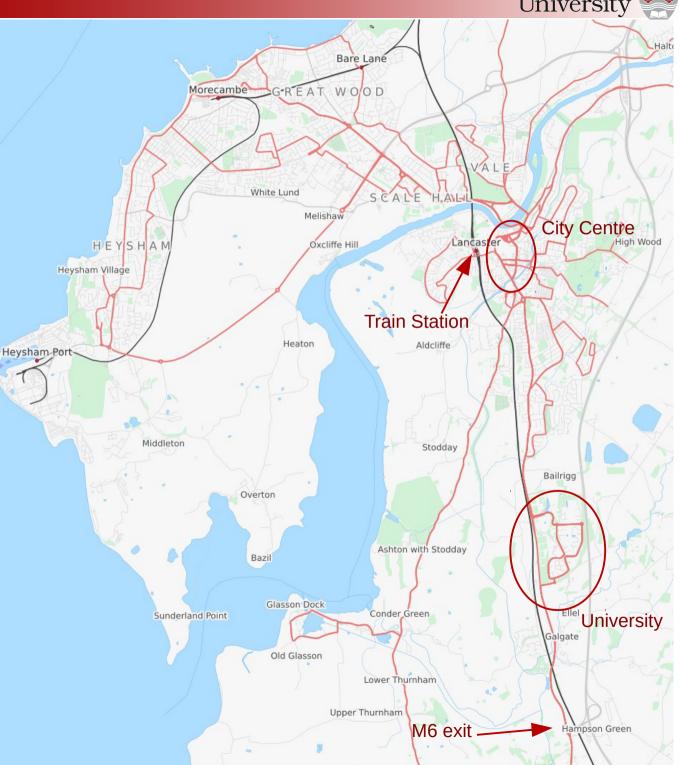
- During the last CB, it was decided to have the spring RD50 workshop 2019 at Lancaster University, United Kingdom
- Some facts about Lancaster University:
 - has been a founding member of RD50 and has re-acquired full member status in 2015

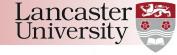
Lancaster 253

University

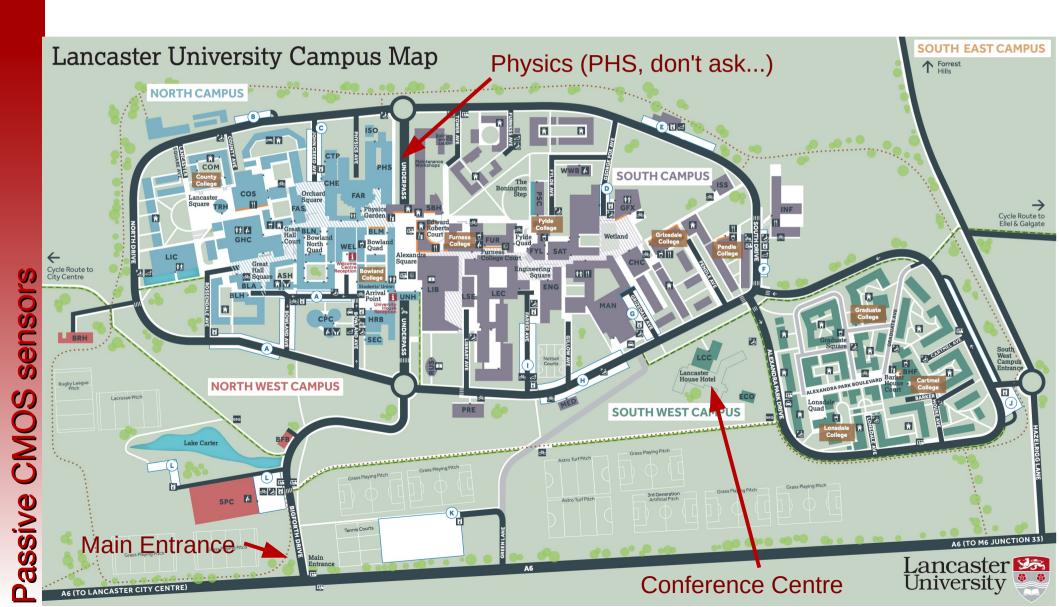
- is among the Top-10 universities in the UK
- is a campus university
- founded in 1964
- > 15.000 students

Getting to Lancaster


- North of Manchster/Liverpool
- Airport access to
 - Manchester (direct train connection from the airport, about 1 hour)
 - Liverpool
 - Glasgow (2 hours by train)
 - Edinburgh (2 hours by train)
 - Birmingham (2 hours by train, direct train connection from the airport)
 - (London 2.5 hours by train, but you need to get from the airport to London Euston station first...)
- For groups of participants, we can organise airport transfers from/to Manchester and Liverpool at reasonable cost (~60 GBP per car)



Local map

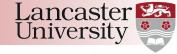

- University Campus located south of Lancaster
- Train station just west of city centre
 - there are direct busses, but more frequent busses from the central bus terminal (north end of city centre)
 - you can also take a taxi (~10 GBP)
- Motorway (M6) exit south of campus ("Lancaster south")

Campus Map

https://www.lancaster.ac.uk/media/lancaster-university/contentassets/documents/maps/campus-map.pdf

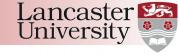
The Physics Building (PHS on the map)

- Freshly refurbished
- Access both from the ring road and from "the spine" the central walkway connecting all buildings for pedestrians
- Park in visitor car park B if arriving by car, and get a scratchcard from me (beware of fines!)
- Bus stop <u>under</u> Alexandra square (central square)

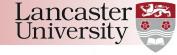


Room options

- June is still term time, but rooms are available near the Physics building or a little separate but still on campus
 - or we could opt for a retreat in "Forrest Hills", featuring even a Golf Course...
- B&B accomodations available on campus (35-52 GBP/night singles, 62 GBP/night double)
- Rather cheap AirBnB options close to the university
- Lancaster House Hotel also on campus
 - ~90 GBP/night, but a real hotel...
- Will need to charge a conference fee for room hire (!) and catering (coffee breaks, catered lunch)
 - but the "customary" 150 EUR should be sufficient
 - can include the workshop dinner



Leisure...


- Lake District and Yorkshire Dales close by
- Might be an incentive for additional time before/after the meeting...

When?

- Traditionally, RD50 meets in early June, but there have been exceptions
- Early June clashes with school holidays (June 3) and Pentecoste (June 8-10)
- Possible dates (some caveats, let's get a preference picture and then sort out the details):
 - June 5-7 (Wed-Fri), "the classical date"
 - June 11-13 (Tue-Thu)
 - June 12-14 (Wed-Fri)
 - June 17-19 (Mon-Wed)
 - June 18-20 (Tue-Thu)
 - June 19-21 (Wed-Fri)
 - June 24-26 (Mon-Wed)
 - June 25-27 (Tue-Thu)
 - July 1-3 (Mon-Wed)
 - July 2-4 (Tue-Thu)
 - July 3-5 (Wed-Fri)
- Agreement via doodle within the next days (email to follow): https://doodle.com/poll/87m3h56dypabathh

Schedule details/travel

- RD50 workshops most often started on Monday mornings and ended early on Wednesday afternoon
 - forces travel on Sunday
 - not optimal for people with family commitments (like me)
- Proposal for both the next workshop at Lanaster and the future in general:
 - start after lunch on Monday to allow travel in the morning, and in turn finish late on Wednesday afternoon
 - same number of nights required, but Mon-Thu instead of Sun-Wed
 - alternatively, start on Wednesday morning, then travel can be on Tuesday afternoon and Friday afternoon
 - or start Wednesday at noon (i.e. travel on Wednesday morning) and then travel back on Saturday morning (usually much cheaper)

Lancaster University

Summary

- We are looking forward to hosting you in June 2019!
- Date to be fixed very soon with your input (so let us know!)
- Travel reasonably easy via Manchester Airport (largest UK airport outside London) with lots of direct connections

AND

Please fill in the doodle poll to give your availability, use the comments to give us additional input!

https://doodle.com/poll/87m3h56dypabathh