ROQOT I/O compression
algorithms

Oksana Shadura, Brian Bockelman
University of Nebraska-Lincoln

Outline

Status update about integration of LZ4 algorithm
Status update about integration of ZLIB* algorithms
Status update about integration of ZSTD algorithm
Future plans

Status of ROOT /O builtin updates

Algorithm

LZMA
WIP [oshadura/lzma-5.2.4]

ZLIB

[oshadura/zlib-revert]

LZ4

[bbockelm/bitshuffle_integration_v1]
[oshadura/lz4-bitshuffle]
[oshadura/lz4-1.8.3]

ZSTD (not in master)

[oshadura/zstd-default]

ROOT built-in
version

5.2.1

1.2.8

1.7.5

Previous test -
1.34

Planned Updates

5.2.4

1.2.8 + CF

1.8.3

1.3.6

Performance
Improvements?

No (bug fixes)

Yes

Yes

Yes

Larger is better

-

Write Tests - Write Speed and Compression Ratio

Compression ratio

Compression speed vs Compression Ratio for compression

algorithms
Test node: Haswell+ SSD
525 LZMA
; ZSTD
AF———o— o
\
4.75 0\. ®
S ZLB
4.5 ¥
LZ4
4.25
O 2 4 @
4
0 25 50 75 100 125 150 175
Compression speed, MB/s
® 7ZSTD-1 ZSTD-2 ZSTD-3 ZSTD-4 ¥V ZSTD-5 @ ZSTD-6
& ZSTD-7 [| ZSTD-8 A ZSTD-9 V ZLIB-1 @ ZLIB-6 @ ZLIB-9
LZMA-1 LZMA-4 LZMA-9 @ LZ4-1 ¢ LZ4-4 W LZ4-9

HIgncnarts.com

> Larger is better Test used: roottest-io-compression-make with 2000 entries

Read Speed - Compare across algorithms

Decompression speed, 2000 event TTree, MB/s

B No Compression ﬁ H|ghe|" is
B s better!

LzZ4
Uncompressed speed

B zib1.28

B LzvA

Reminder: for these

classes of algorithms,

decompression speed

has little variation across
0 1 6 9 compression levels.

Decompression speed, MB/s

Compression level

Status update about integration of LZ4 algorithm

...sadly search gives no logo...but only pictures of
Zeppelin LZ4 aircraft :-)

LZ4 is default compression algorithm

e Itis a good trade off between compression ratio and compression /

decompression speed!
e Was enabled as default in(ROOT 6.14.01)temporary disabled in 6.14.04 fyr the

further investigation)

e We got reported some corner cases:
o Tree generated with variable-sized branches embed an “entry offset” array in their on-disk

representation.
o Genomic data processed by GeneROOT

\

Example from ROOT Forum: arrays of Int_v stored in
branches of ROOT TTree

Size and RT for compression of TTree

400 B Times ‘
B Size, MB ‘

300
200

100

BitShuffle pre-conditioner for LZ4

Bitshuffle is an algorithm that rearranges typed, binary data for improving compression

Plan of work:

https://sft.its.cern.ch/jira/browse/ROOT-9633

Determine how we should expose this functionality (separate algorithm versus
special API to core/zip versus preconditioner chain).

Switch LZ4 to streaming mode.

BitShuffle one block at a time (into a thread-local array), then feed individual
8KB blocks to LZ4.

Cleanup unused BitShuffle code. Remove OpenMP integration (dead code
right now).

Make BitShuffle use appropriate trampolines to pick AVX2 vs SSE2 version at
runtime.

Remove debugging statements.

Work with Philippe to determine the best way to detect "primitive branches" -
right now, that's an ugly hack.

Implement unzip methods for LZ4.

Remove LZMA attempt (did not result in improvements).

Special-case the buffering of the offset array.

Planned to be available in ROOT 6.16

Compression of large int arrays
2 posts by 2 authors & |G-

Robert Schneiders

Hi,

in our application, we compress and store large integer arrays (all integers
are positive).

The compression with compress_lz4hc2 results in files which are 2 times
bigger than those compressed with zlib (1z4 has half of zlibs compression rate).

Is there a way to improve that?
1z4 decompresses five times faster.
Best regards,

Robert

Yes, Blosc

http:/Awww.blosc.org/

(https://github.com/Blosc/c-blosc) is meta-compressor
supporting LZ4, ZLIB, ZSTD with BitShuffle and Shuffle filters

Optimization of TTree with Int_V branches:
AutoFlush(1000000) & kGenerateOffsetMap

- B et £
‘ kOffset), MB
B Size (master), MB
~ t->SetAutoFlush(1600000);
- ROOT: :TIOFeatures features;
200 - features.Set(ROOT: :Experimental: :EIOFeatures: :
< - kGenerateOffsetMap) ;
£ - t->SetIOFeatures(features);
5
N
% 100
0

LZ4-4 ZLIB-1

Status update about integration of ZSTD algorithm

¢) Zstandard

)

Larger is better

-

Write Tests - Write Speed and Compression Ratio

Compression ratio

Compression speed vs Compression Ratio for compression
algorithms
Test node: Haswell+ SSD

= LZMA _—————)
: ZSTD
AF— o o
\
4.75 0\. ®
~_ lzus
45 A
LZ4
4.25
O 2 4 @
4
0 25 50 75 100 125 150 175
Compression speed, MB/s
® ZSTD-1 ZSTD-2 ZSTD-3 ZSTD-4 ¥V ZSTD-5 @ ZSTD-6
& ZSTD-7 [| ZSTD-8 A ZSTD-9 V ZLIB-1 @ ZLIB-6 @ ZLIB-9
LZMA-1 LZMA-4 LZMA-9 @ LZ4-1 ¢ LZ4-4 W LZ4-9

HIgncnarts.com

> Larger is better Test used: roottest-io-compression-make with 2000 entries

12

[HCB

LHCB B2ppKK2011_md_noPIDstrip.root (22920 entries)

= | 74
== | ZMA
ZLIB

= = 7STD

[o=

(0]

>

(]

e O

(an]

=3

ﬁ L —

.a_) A

o N

>

L

0 2 4 6 8 10

Compression level

Status update about integration of ZLIB* algorithms

zlib

28

CLOUDFLARE

14

ZLIB-CF vs. ZLIB

Jira issue: ROOT-8465

—_———— e — a1

https://github.com/oshadura/root/tree/zlib-revert
15

https://sft.its.cern.ch/jira/browse/ROOT-8465

Future work: Cloudflare ZLIB vs ZLIB - Intel Laptop/Intel
Server(2000 events)

Compression speed vs Compression Ratio for compression

algorithms
. A 4.75
Note: small dynamic \\ > \
range for y-axis. a7 @ <

Larger is better

Compression ratio

function.

4.5

51 3 %
The CF-ZLIB Fass (cg = - >
compression ratios do ® T %, o\
change because e = \\'}1 °) e(/
CF-ZLIB uses a . \\:‘) I ®
different, faster hash | @ %

4.45

Compression speed, MB/s

ZLIB Intel Server Cloudflare-1 ZLIB Intel Server Cloudflare-6
ZLIB Intel Server Cloudflare-9 ZLIB Intel Laptop Cloudflare-1
ZLIB Intel Laptop Cloudflare-6 = ZLIB Intel Laptop Cloudflare-9
ZLIB Intel Server-1 ZLIB Intel Server-6 ZLIB Intel Server-9
V ZLIB Intel Laptop-1 ZLIB Intel Laptop-6 ZLIB Intel Laptop-9

Cloudflare zlib vs zlib - AARCH64+CRC32 HiSilicon's Hi1612 processor (Taishan
2180 oshadura@hwei-2180-0l-06 - 20 events)

Compression speed vs Compression Ratio for compression

Compression ratio

5.5

4.5

3.5

2:5

algorithms
Test nodes: AARCH64, AARCH64 +crc32
ZLIB/Neon+crc32 CF-ZLIB/Neon+crc32
N = .
CF-ZLIB/Neon
ZLIB/Neon
=&d>
0 5 10 15 20 25 30 35 40

Compression speed, Mb/s

¥V LZ4 AARCH64neon-4

ZLIB AARCH64neon Cloudflare-1 @ ZLIB AARCH64neon Cloudflare-6

ZLIB AARCH64neon Cloudflare-9 ZLIB AARCH64neoncrc32 Cloudflare-1

ZLIB AARCH64neoncrc32 Cloudflare-6 @ ZLIB AARCH64neoncrc32 Cloudflare-9
ZLIB AARCH64neoncrc32-1 [ZLIB AARCH64neoncrc32-6

ZLIB AARCH64neoncrc32-9 ZLIB AARCH64neon-1 ZLIB AARCH64neon-6
ZLIB AARCH64neon-9 LZMA AARCH64neon-8 LZMA AARCH64neoncrc32-8
LZ4 AARCH64neoncrc32-4

Significant improvements for aarch64
with with Neon/CRC32

Improvement for zlib Cloudflare
comparing to master for:
ZLIB-1/Neon+crc32: -31%
ZLIB-6/Neon+crc32: -36%
ZLIB-9/Neon +crc32-9: -69%
ZLIB-1/Neon: -10%
ZLIB-6/Neon: -10%
ZLIB-9/Neon: -50%

o O O O O O

17

ZLIB-CF:S

MD CRC32 issue

4x unrolled with prefetch

improved by Bulat Ziganshin

CRC32 of 1 GByte published by bits per iteration | table size time throughput CPU cycles/byte
Original (unknown) 1 - 29.2 seconds 35 MByte/s approx. 100
Branch-free (unknown) il - 16.7 seconds 61 MByte/s approx. 50
Improved Branch-free (unknown) 1 - 14.5 seconds 70 MByte/s approx. 40
Half-Byte (unknown) 4 64 bytes 4.8 seconds 210 MByte/s approx. 14
Tableless Full-Byte (sent to me by Hagai Gold) 8 - 6.2 seconds 160 MByte/s approx. 18
found in "Hacker's Delight"
Tableless Full-Byte by Henry S. Warren 8 - 6.3 seconds 155 MByte/s approx. 19
_ | stanamlnpleentation | Gl vosandte | N | e o | MoMEyes, | ool |
: Slicing-by-4 Intel Corp. 32 4096 bytes | 0.95 or 1.2 seconds* | 1050 or 840 MByte/s* approx. 3 or 4%
| Slicing-by-8 Intel Corp. 64 8192 bytes | 0.55 or 0.7 seconds* | 1800 or 1400 MByte/s* | approx. 1.75 or 2.25*
|
T based on Slicing-by-8,
: Slicing-by-16 improved by Bulat Ziganshin 128 16384 bytes | 0.4 or 0.5 seconds* | 3000 or 2000 MByte/s* | approx. 1.1 or 1.5*
I = =
I Slicing-by-16 hiased on SUGINgy-; 512 16384 bytes | 0.35 or 0.5 seconds* | 3200 or 2000 MByte/s* | approx. 1 or 1.5*
|

*https.//create.stephan-brumme.com/crc32/

18

ZLIB-CF: ROOT performance on a branch without
SIMD (20 events)

1 B crc32_32x4b()

s B SIMD version
% 05
'_
a4

0.25

0 4 28 = = 2
ZLIB-1 ZLIB-6 ZLIB-9 ZLIBCF-1 ZLIBCF-6 ZLIBCF-9
ZLIB algorithms*
Note: crc32_16b not shown as it is significantly slower in all cases. 19

ZLIB-CF: ROOT performance on a branch without
SIMD

MB/s

25

20

15

10

B crc32_32x4b()

[] crc32_8b.(')1}

crc32_4b()

M. SIHiorersian e We need to sacrifice in space:

: in non-SIMD v. files_are 8%
bigger versus ZLIB 1.2.8, while in
- SIMD case they are 8% smaller then
ZLIB1.2.8
e We are winning in RT::
compression speed is 30%
faster in non-SIMD case and

60% faster in SIMD case!

e Decompression is a bit faster,
but not significantly! |

ZLIB-1 ZLIB-6 ZLIB-9 ZLIBCF-1 ZLIBCF-6 ZLIBCF-9

Note: ZLIBCF-9 compression speed is comparable to ZLIB-1! 20

Future plans:

e Re-enable LZ4 as a default compression algorithm
o Add bitshuffle filter
o Enable streaming mode
o Enable dictionary support

e Merge ZLIB-CF developments in ROOT master
e Decide on fate of ZSTD

21

Thank you for your attention!

