ATS round MDs (MD3270)

rMPP MD2 preparation meeting

S. Fartoukh, A. Mereghetti, M. Solfaroli on behalf of the OP, OMC, Collimation, LBDS Lumi, Beam-beam, Instability & ADT teams Acknowledgement: X. Buffat

Contents

- MD set up
- Discussion on intensity ramp-up strategy
- Details on MD activities (inc. the validation shift)

MD setup

Combined Ramp and Double Squeeze (CRDS), immediately followed by Q-change and collision @ 65 cm

The pre-squeeze (11 m \rightarrow 2 m) starts at 1 TeV The tele-squeeze (2 m \rightarrow 65 cm) starts at 2.7 TeV \rightarrow Tele-index of 3 End of Ramp

	Matched	Time	Parabolic	Optics name	Tele-	β [*] [cm]	Energy
	Point	[s]	Fraction		Index	at IP1 &5	[GeV]
Constant optics	1	0	0.1	R2017a_A11mC11mA10mL10m	1.000	1100.0	450
	2	15	0.05	R2017a_A11mC11mA10mL10m	1.000	1100.0	452
	3	30	0.05	R2017a_A11mC11mA10mL10m	1.000	1100.0	459
	4	45	0.05	R2017a_A11mC11mA10mL10m	1.000	1100.0	470
	5	60	0.05	R2017a_A11mC11mA10mL10m	1.000	1100.0	485
	6	90	0.05	R2017a_A11mC11mA10mL10m	1.000	1100.0	531
	7	120	0.05	R2017a_A11mC11mA10mL10m	1.000	1100.0	594
	8	160	0.05	R2017a_A11mC11mA10mL10m	1.000	1100.0	705
	9	241	0.05	R2017a_A11mC11mA10mL10m	1.000	1100.0	1013
	10	293	0.13	R2017a_A970C970A10mL970	1.000	970.0	1277
	11	317	0.10	R2017a_A920C920A10mL920	1.000	920.0	1416
e.	12	337	0.15	R2017a_A850C850A10mL850	1.000	850.0	1532
Pre-squeeze	13	361	0.13	R2017a_A740C740A10mL740	1.000	740.0	1671
	14	385	0.10	R2017a_A630C630A10mL630	1.000	630.0	1810
	15	413	0.10	R2017a_A530C530A10mL530	1.000	530.0	1972
	16	437	0.11	R2017a_A440C440A10mL440	1.000	440.0	2111
	17	461	0.12	R2017a_A360C360A10mL360	1.000	360.0	2250
	18	493	0.15	R2017a_A310C310A10mL300	1.000	310.0	2435
	19	525	0.15	R2017a_A230C230A10mL300	1.000	230.0	2620
	20	545	0.15	R2018a_A200C200A10mL300	1.000	200.0	2736
	21	649	0.15	R2018aT200_A182C182A10mL300	1.096	182.5	3339
ze	22	749	0.20	R2018aT200_A155C155A10mL300	1.290	155.0	3918
Tele-squeeze	23	825	0.15	R2018aT200_A122C122A10mL300	1.633	122.5	4358
	24	925	0.16	R2018aT200_A95C95A10mL300	2.105	95.0	4937
	25	1025	0.20	R2018aT200_A77C77A10mL300	2.581	77.5	5516
	26	1169	0.10	R2018aT200_A65C65A10mL300	3.077	65.0	6350
	27	1210	0.05	R2018aT200_A65C65A10mL300	3.077	65.0	6500

Intensity ramp up strategy

- Validation shift with **setup beams** (see details later)
- First step with 1+12+144 = **157 bunches**
- Intermediate step with 1+12+ 3 × 144 = 445 bunches
- Last step with 1+12+ 6 × 144 = 877 bunches
- (all bunches except the first INDIV are colliding at IP1/5, fully separated at IP2 and with typical separation at IP8)
- → Replacing the 3 steps by 1/2/5 SPS injection could be acceptable w/o rending inconclusive the MD results (a min. of 700 "packed" bunches is needed for e-cloud)
- → 1+12+2× 48= 109 bunches for the first step is possible, but the filling scheme will have to change as of the second step, making partially inconclusive the BBLR and instability studies made at the first step.

Detailed MD activities (1/2)

Validation shift

Activity (and comments)	Time			
	estimate [h]			
Single_7b_1_1_1_5ncPilots2cNom (2 colliding nominal + 10 non-colliding probes) New TCT/TCL4 functions (centres and Nsigma) and energy/b [*] interlock thresholds				
All maskable interlocks (inc. collimator) masked				
New MO ramp function with positive polarity				
- Setting up at injection, and injection \rightarrow 0.5 h	3.5			
- <u>Combined ramp & double squeeze</u> → 0.25 h				
- Betatron Loss maps at flat top (optional) → 0.25 h				
- Q-change immediately followed by the Physics BP, Establish and optimize collision $ ightarrow$ 0.5 h				
- Betatron Loss maps in collision @ 120 μ rad \rightarrow 0.25 h				
- 120 \rightarrow 90 μ rad X-angle reduction and lumi optimization \rightarrow 0.25 h				
- Betatron Loss maps in collision @ 90 μ rad \rightarrow 0.25 h				
- 90 \rightarrow 120 μ rad X-angle increase and lumi optimization \rightarrow 0.25 h				
- Off-momentum Loss maps in collision (both dp)@ 120 μ rad \rightarrow 0.5 h				
- Scraping (<5E10), de-bunching, asynchronous dump (TCT @ 11 σ) \rightarrow 0.5h				
Total	3.5			

Intensity ramp up

Activity (and comments)	Time estimate [h]					
1rst Fill: BBLR studies with trains						
- Setting up at injection and injection $ ightarrow$ 0.75 h	5.0					
- <u>Combined ramp & double squeeze</u> -> 0.25 h						
- Q-change and Setting up at flat top \rightarrow 0.5h						
- <u>Collision and lumi optimisation with trains</u> \rightarrow 0. 5 h						
- MO polarity reversal, down to -570 A & Tune scan→ 0.5 h						
- X-angle reduction down to 100-90 μ rad (if life time good enough) & Tune scan $ ightarrow$ 0.5 h						
- MO scan from -570 A to +200 A (2/3 cycles in one go for each step) \rightarrow 0.75 h						
- MO @ -570 A , X-angle back to 120 μ rad and lumi levelling test $ ightarrow$ 0. 25 h						
- Offset levelling test (fast and slow Vernier scan) and beam activity observation $ ightarrow$ 1.0 h						
Dump & Ramp down	1.0					
2d Fill: Intensity ramp up with 450 bunches						
- Setting up at injection and injection $ ightarrow$ 0.75 h	3.0					
- Combined ramp & double squeeze \rightarrow 0.25 h						
- Q-change, Setting up at flat top, and heat-load/beam activity observation $ ightarrow$ 0.5 h						
- <u>Collision and lumi optimisation with trains</u> \rightarrow 0. 25 h						
- MO polarity reversal down to -570 A and X-angle reduction down to 100-90 μ rad (if life time good enough) $ ightarrow$ 0. 25 h						
- Lumi optimization and heat-load/beam activity observation $ ightarrow$ 1.0 h						
Dump & Ramp down	1.0					
3rd Fill: Intensity ramp up with 900 bunches						
- Setting up at injection with probes and injection $ ightarrow$ 0.75 h	4.0					
- Combined ramp & double squeeze \rightarrow 0.25 h						
- Q-change, Setting up at flat top, and heat-load/beam activity observation $ ightarrow$ 0.5 h						
- <u>Collision and lumi optimisation with trains</u> \rightarrow 0. 25 h						
- MO polarity reversal down to -570 A and X-angle reduction down to 100-90 μ rad (if life time good enough) $ ightarrow$ 0. 25 h						
- Lumi optimization and heat-load/beam activity observation (optional: Vernier scan towards the end) $ ightarrow$ 2.0 h						
- Beam dump						

Total

Summary & outlook

- Identifying and demonstrating an operational scenario with the CRDS (and MO@ 200 A EoR) is <u>vital</u> to boost the LHC performance in Run III
- Ideally, however, one would like to demonstrate the CRDS with negative MO polarity all along, which is more "risky" (instability-wise) in the Physics beam process, but on the other will avoid MO polarity reversal for colliding beams, (MO<0 is needed for life time but only at lower β^* /X-angle)

** If the offset levelling test is probing, as foreseen at MO=-570 A at the end of the first step, the MO polarity will be reversed to negative (Ramp # 3 available in the trim history) as of the second step of the intensity ramp up. **

 \rightarrow If counter-indication from rMPP, one will NOT do this.