
New Machine Learning
Developements in ROOT/TMVA

L. Moneta (CERN EP-SFT)
on behalf of the TMVA development team

ROOT Users Workshop

10-15 September 2018, Sarayevo

L. Moneta / EP-SFT

TMVA
ROOT Machine Learning tools are provided in the package TMVA (Toolkit for
MultiVariate Analysis)
Provides a set of algorithms for standard HEP usage
Used in LHC experiment production and in several analyses
Key features

Facilitates HEP research, from detector to analysis
Easy to use, good performance
Long term support
Several features added recently (e.g. deep learning)

Development done in collaboration with CERN experiments and HEP
community

!2

L. Moneta / EP-SFT

Outline

New machine learning methods for TMVA
Deep learning library

current status
performance tests with comparison to Keras/Tensorflow

A look into the future
planned new developments

Summary and conclusions

!3

L. Moneta / EP-SFT

Several New Developments in TMVA

New features available in latest ROOT version 6.14:
Deep Learning Module with support for

Dense Layer
Convolutional Layer
Recurrent Layer

improved BDT performance using multi-thread parallelisation
improved Cross Validation

And also available since ROOT 6.12:
new interfaces to external tools (scikit-learn, Keras, R)

!4

L. Moneta / EP-SFT

Deep Learning in TMVA
Deep Learning library in ROOT/TMVA

parallel evaluation on CPU
implementation using  
OpenBlas and Intel TBB library

GPU support using CUDA
Excellent performance and  
high numerical throughput

For more information see
https://indico.cern.ch/event/565647/contributions/2308666/attachments/1345668/2028738/tmva_dnn_gpu.pdf

Available for dense layers since ROOT 6.08 but extended the
design in 6.14 to a new module supporting different layer types

!5

CPU GPU
100 GFLOP/s

1 TFLOP/s

https://indico.cern.ch/event/565647/contributions/2308666/attachments/1345668/2028738/tmva_dnn_gpu.pdf

L. Moneta / EP-SFT

Deep Learning Performance

!6

DNN vs Standard ANN DNN vs BDT

Using Higgs public dataset (from UCI) with 11M events
Significant improvements compared to shallow networks and BDT

• DNN: 5 hidden layers 
with 256 neutrons

• SNN: 1 hidden layer

https://archive.ics.uci.edu/ml/datasets/HIGGS

L. Moneta / EP-SFT

Training time — Dense networks
Higgs UCI dataset with 11M Events
TMVA vs. Keras/Tensorflow
“Out-of-the-box” performance

Excellent TMVA performance !
How does it scale?

DNN Training Performance

!7

(S) — Single threaded

(P) — Intel Xeon E5-2683 (28 core)
La

rg
er

 =
 B

et
te

r

GPU — GTX1080Ti

GPU(2) — GTX980

GPUCPU

TMVA CPU (S)

KERAS CPU (S)

TMVA CPU (P)

KERAS CPU (P)

TMVA GPU
KERAS GPU

TMVA GPU(2)

KERAS GPU(2)

410

510

610

N
um

be
r o

f E
ve

nt
s

Tr
ai

ne
d

/ s
ec

on
d

5 Dense Layer - 200 nodes - Batch Size = 100

L. Moneta / EP-SFT

DNN Training Performance

Tensorflow

TMVA CPU (P)

KERAS CPU (P)

TMVA GPU
KERAS GPU

TMVA GPU(2)

KERAS GPU(2)

410

510

610

N
um

be
r o

f E
ve

nt
s

Tr
ai

ne
d

/ s
ec

on
d

5 Dense Layer - 200 nodes - Batch Size = 100

TMVA CPU (P)

KERAS CPU (P)

TMVA GPU
KERAS GPU

TMVA GPU(2)

KERAS GPU(2)

410

510

610

N
um

be
r o

f E
ve

nt
s

Tr
ai

ne
d

/ s
ec

on
d

5 Dense Layer - 200 nodes - Batch Size = 1000

•Key difference is GPU utilisation
•Tensorflow optimised for large operations

Batch size 100

!8

Batch size 1000

(S) — Single threaded

(P) — Intel Xeon E5-2683 (28 core)

GPU — GTX1080Ti

GPU(2) — GTX980

CPUGPUCPU

~10x
~2x

L. Moneta / EP-SFT

DL Evaluation Performance
Single event evaluation time for 5
layer network

For time critical applications —
e.g. on-line reconstruction
Fast! 1.5 times speedup over
specialised libraries like LWTNN
when using optimised Blas
library exploiting vectorisation

For batched evaluation, same
story as training

!9

TMVA OPENBLAS LWTNN TMVA MACOS-BLAS

410

N
um

be
r o

f E
ve

nt
s

Pr
ed

ic
te

d
/ s

ec
on

d

Prediction Time (5 Dense Layers - 200 units)

L. Moneta / EP-SFT

New Developments
Extended Deep Neural Network
classes  
by adding:

Convolutional Neural Network
very powerful for image data sets

Recurrent Neural Network
useful for time-dependent data

Working also on auto-encoders and
generative adversarial networks

!10

L. Moneta / EP-SFT

Convolutional Neural Network
Available in latest ROOT release (6.14)
Supporting CPU parallelization, GPU is available in ROOT master

parallelisation and code optimisation is essential

!11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kg
ro

un
d

re
je

ct
io

n

MVA Method:
CNN_CPU
PyKeras
DNN_CPU

Background rejection versus Signal efficiency

0 5 10 15 20 25 300

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

background image

0 5 10 15 20 25 300

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

signal image

input 32x32 images

Convolutional + Pooling +  
Dense layers

L. Moneta / EP-SFT

CNN Training Performance

CNN performance for TMVA CPU and GPU
Simulated particle showers from
electromagnetic calorimeter image dataset
TMVA GPU is now available in ROOT
master
again excellent TMVA performance for
typical HEP networks !
Code run already at same speed as
Keras/Tensorflow on small/medium
batch sizes

!12

TMVA CPU (P) KERAS CPU (P) TMVA GPU KERAS GPU

310

N
um

be
r o

f E
ve

nt
s

Tr
ai

ne
d

/ s
ec

on
d

4 Conv Layer - 12 nodes - 32x32 images - batch size = 32

L. Moneta / EP-SFT

CNN Developments
GSOC student developed GPU implementation

excellent performances already obtained
further optimisation are possible using  
parallelisation within batches

require modifying used data structure for GPU
using a tensor with (batch size x depth x image size)
perform loop for events in a batch in the GPU

Further planned developments
support for 1D and 3D convolutions
implement transpose (inverse) convolution (for generative models)

!13

time

Forward pass GPU time

events

L. Moneta / EP-SFT

NEW DL Optimizers
Integrated in TMVA master new deep learning optimisers

In addition to SGD added
support acceleration for SGD using momentum
ADAM (new default)
ADADelta
ADAGrad
RMSProp

!14

With these new optimisers we need less epochs (iterations) to converge !

L. Moneta / EP-SFT

Recurrent Network
Added in 6.14 first implementation of a recurrent layer

GSOC 2017 project
RNN are very useful for time depend data

several applications in HEP (e.g. flavour tagging)
2018 GSOC project for developing a LSTM layer

LSTM (Long Short Term Memory) can cope with
long term dependencies in the sequence

Work is not completed, but plan to complete and
integrate first version before end of the year
Once LSTM layer is available also GRU (Gated
Recurrent Unit) can be implemented

!15

L. Moneta / EP-SFT

Deep Auto-encoder
A neural network trained to learn the input
data

Unsupervised machine learning methods
Useful for dimensionality reduction or
anomaly detection
Can be used also as a generator

Variational Auto-encoder
GSOC project on developing auto-encoders

implemented Kullback-Leiber divergence
MethodAE class for building auto-encoders

Plan to integrate it in TMVA
!16

L. Moneta / EP-SFT

Generative Adversarial Model
GSOC project on developing a
class for creating and training
GAN based on the current  
TMVA DL library
MethodGAN class

plan to complete and integrate
in the ROOT master in the
next months

!17

Training of GAN can be difficult, min-max game optimisation

L. Moneta / EP-SFT

Summary Deep Learning

Recent additions
Convolutional and recurrent layers
new optimisers complementing SGD

Development ongoing!
LSTM (and also GRU) layers
GAN and VAE for event generation

!18

Available New! Upcoming

Dense Conv RNN LSTM GAN VAE

CPU

GPU

L. Moneta / EP-SFT

TMVA Interfaces
External tools are available as additional methods in TMVA and they can be trained and
evaluated as any other internal ones.

RMVA: Interface to Machine Learning methods in R
c50, xgboost, RSNNS, e1071

PYMVA: Python Interface
scikit-learn

with RandomForest,  
Gradiend Tree Boost, Ada Boost

Keras (Theano + Tensorflow)
support model definition in Python and then training and evaluate in TMVA

Input data are copied now internally from input ROOT trees to TMVA data structure and then to
Numpy arrays

working on direct mapping from ROOT tree to Numpy arrays
see Stefan W. presentation

!19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kg
ro

un
d

re
je

ct
io

n

MVA Method:
DL_CPU
PyKeras
BDT

Background rejection versus Signal efficiency

L. Moneta / EP-SFT

Boosted Decision Tree

Boosting is serial Can’t construct all
trees in parallel
Training time speed up ~1.6x with 4
threads approaching ~3x asymptotically
To use, just add
ROOT::EnableImplicitMT() 
to your code

10 Trees — 1 Million events

Sp
ee

d
up

Number of threads

!20

→

Original slide by Andrew Carnes

L. Moneta / EP-SFT

Cross Validation in TMVA
TMVA supports k-fold cross-validation

Integration with TMVA analysis tools (e.g. GUI)
support for “CV in application”

Hyper-parameter tuning
find optimised parameters (BDT-SVM)

Parallel execution of folds in CV
using multi-processes execution in on a single node
foreseen to provide parallelisation in a cluster using Spark or MPI

See Kim A. presentation

!21

D1 D2 D3

D1 D3 D2

D2 D3 D1

Model 1

Model 2

Model 3

Training data Test data Output models

L. Moneta / EP-SFT

Future Developments
Our aim is to provide to the users community efficient physics
workflows

tools for efficient
data loading (using new RDataFrame)
integration with external ML tools
training of commonly used architectures
deployment and inference of trained models

TMVA efficiently connects input data to ML algorithms
we are defining new user interfaces (see Stefan W. presentation)

!22

L. Moneta / EP-SFT

Summary
Machine learning methods

Dense, Convolutional and Recurrent networks in TMVA
Excellent training + evaluation time performance
Training in parallel Boosted Decision Trees

Workflow improvements
Cross validation analysis and parallelisation

Future
Efficient physics workflows connecting input data to algorithms

integration with new RDataFrame and mapping to Numpy
fast deployment and inference of trained models

!23

L. Moneta / EP-SFT

Conclusions
Very active development happening in TMVA

several new features released recently and more expected for next release
thanks to many student contributions (e.g. from Google Summer of Code)

Users contributions and feedback from users are essential
ROOT is an open source project
best way to contribute is with Pull Request in GitHub  
https://github.com/root-project/root

ROOT Forum for user support with a category dedicated to TMVA 
 https://root.cern.ch/phpBB3/

JIRA for reporting ROOT bugs: https://sft.its.cern.ch/jira
or just contact us (TMVA developers) directly for any questions or issues

!24

https://github.com/root-project/root
https://root.cern.ch/phpBB3/
https://sft.its.cern.ch/jira

L. Moneta / EP-SFT

TMVA Contributors
Lorenzo Moneta
Sergei Gleyzer
Omar Zapata Mesa
Kim Albertsson
Stefan Wunsch
Peter Speckmeyer
Simon Pfreundschuh (GSOC 2016)
Vladimir Ilievski (GSOC 2017)
Saurav Shekkar (GSOC 2017)
Manos Stergiadis (GSOC 2018)
Ravi Selvam (GSOC 2018)
Adrian Bevan, Tom Stevenson
Attila Bagoly (GSOC 2016)
 Paul Seyfert
 Andrew Carnes

Algorithm development, Integration and support
Analyzer Tools, Algorithm Development
PyMVA, RMVA, Modularity, Parallelization and Integration
Multi-class for BDT, cross validation/evaluation and support
Keras Interface, integration, improved data handling
Deep Learning CPU
Deep Learning CPU and GPU
New Deep Learning module, Convolutional layers
New Deep Learning module and Recurrent layers
GPU support for CNN
New optimisers for deep learning
SVMs, Cross-Validation, Hyperparameter Tuning
Jupyter Integration, Visualization, Output
Performance optimization
Regression, Loss Functions, BDT Parallelization

!25

Anurshee Rankawat, Siddhartha Rao, Harsit Prasad (GSOC 2018) GAN, VAE and LSTM

And with continued invaluable contributions from Andreas Hoecker, Helge Voss, Eckhard v.Thorne, Jörg Stelzer

Backup Slides

L. Moneta / EP-SFT

Deep Learning Performance

!27

2.7 * Theano

Excellent throughput compared to Theano on same GPU

Network:
• 20 input nodes,
• 5 hidden layers with 256

nodes each,
• tanh activation

functions,
• squared error loss
• batch size = 1024
• Single precision
•

Training Data:
• Random data from a  

linear mapping  
ℝn→ℝ 

L. Moneta

Example PyMVA with Keras

!28

Define the Keras model in Python

Book the method as any others of TMVA

L. Moneta

PyMVA with Keras

!29

Train,Test and Evaluate inside TMVA (using TMVA::Factory)

Examine result with TMVA GUI 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kg
ro

un
d

re
je

ct
io

n

MVA Method:
DL_CPU
PyKeras
BDT

Background rejection versus Signal efficiency

