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TMVA
ROOT Machine Learning tools are provided in the package TMVA (Toolkit for 
MultiVariate Analysis) 
Provides a set of  algorithms for standard HEP usage
Used in LHC experiment production and in several analyses 
Key features

Facilitates HEP research, from detector to analysis
Easy to use, good performance
Long term support
Several features added recently (e.g. deep learning)

Development done in collaboration with CERN experiments and HEP 
community 
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Outline

New machine learning methods for TMVA
Deep learning library

current status
performance tests with comparison to Keras/Tensorflow

A look into the future
planned new developments

Summary and conclusions
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Several New Developments in TMVA 

New features available in latest ROOT version 6.14:
Deep Learning Module with support for

Dense Layer 
Convolutional Layer
Recurrent Layer

improved BDT performance using multi-thread parallelisation 
improved Cross Validation

And also available since ROOT 6.12: 
new interfaces to external tools (scikit-learn, Keras, R)
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Deep Learning in TMVA
Deep Learning library in ROOT/TMVA

parallel evaluation on CPU
implementation using  
OpenBlas and Intel TBB library

GPU support using CUDA
Excellent performance and  
high numerical throughput

For more information see 
https://indico.cern.ch/event/565647/contributions/2308666/attachments/1345668/2028738/tmva_dnn_gpu.pdf

Available for dense layers since ROOT 6.08 but extended the 
design in 6.14 to a new module supporting different layer types 
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CPU GPU
100 GFLOP/s

1 TFLOP/s

https://indico.cern.ch/event/565647/contributions/2308666/attachments/1345668/2028738/tmva_dnn_gpu.pdf
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Deep Learning Performance 
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DNN vs Standard ANN DNN vs BDT

Using Higgs public dataset (from UCI) with 11M events
Significant improvements compared to shallow networks and BDT  

• DNN: 5 hidden layers 
with 256 neutrons

• SNN: 1 hidden layer 

https://archive.ics.uci.edu/ml/datasets/HIGGS
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Training time — Dense networks
Higgs UCI dataset with 11M Events
TMVA vs. Keras/Tensorflow
“Out-of-the-box” performance

Excellent TMVA performance !
How does it scale?

DNN Training Performance 

!7

(S) — Single threaded

(P) — Intel Xeon E5-2683 (28 core)
La

rg
er

 =
 B

et
te

r

GPU — GTX1080Ti

GPU(2) — GTX980

GPUCPU

TMVA CPU (S)

KERAS CPU (S)

TMVA CPU (P)

KERAS CPU (P)

TMVA GPU
KERAS GPU

TMVA GPU(2)

KERAS GPU(2)

410

510

610

N
um

be
r o

f E
ve

nt
s 

Tr
ai

ne
d 

/ s
ec

on
d

5 Dense Layer - 200 nodes - Batch Size = 100



L. Moneta /  EP-SFT

DNN Training Performance 

Tensorflow
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•Key difference is GPU utilisation
•Tensorflow optimised for large operations

Batch size 100
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Batch size 1000

(S) — Single threaded
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DL Evaluation Performance 
Single event evaluation time for 5 
layer network

For time critical applications — 
e.g. on-line reconstruction
Fast! 1.5 times speedup over 
specialised libraries like LWTNN 
when using optimised Blas 
library exploiting vectorisation

For batched evaluation, same 
story as training
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New Developments 
Extended Deep Neural Network 
classes  
by adding:

Convolutional Neural Network 
very powerful for image data sets

Recurrent Neural Network
useful for time-dependent data

Working also on auto-encoders and 
generative adversarial networks
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Convolutional Neural Network
Available in latest ROOT release (6.14) 
Supporting CPU parallelization,  GPU is available  in ROOT master 

parallelisation and code optimisation is essential
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CNN Training Performance

CNN performance for TMVA CPU and GPU
Simulated particle showers from 
electromagnetic calorimeter image dataset
TMVA GPU is now available in ROOT 
master
again excellent TMVA performance for 
typical HEP networks !
Code run already at same speed as 
Keras/Tensorflow on small/medium 
batch sizes
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CNN Developments
GSOC student developed GPU implementation 

excellent performances already obtained
further optimisation are possible using  
parallelisation within batches

require modifying used data structure for GPU
using a tensor with (batch size x depth x image size) 
perform loop for events in a batch in the GPU

Further planned developments
support for 1D and 3D convolutions
implement transpose (inverse) convolution (for generative models)
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NEW DL Optimizers
Integrated in TMVA master new deep learning optimisers

In addition to SGD added 
support acceleration for SGD using momentum
ADAM (new default)
ADADelta
ADAGrad
RMSProp 
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With these new optimisers we need less epochs (iterations) to converge !
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Recurrent Network
Added in 6.14 first implementation of a recurrent layer

GSOC 2017 project
RNN are very useful for time depend data

several applications in HEP (e.g. flavour tagging)
2018 GSOC project for developing a LSTM layer

LSTM (Long Short Term Memory) can cope with 
long term dependencies in the sequence

Work is not completed, but plan to complete and 
integrate first version before end of the year
Once LSTM layer is available also GRU (Gated 
Recurrent Unit)  can be implemented
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Deep Auto-encoder
A neural network trained to learn the input 
data

Unsupervised machine learning methods
Useful for dimensionality reduction or 
anomaly detection 
Can be used also as a generator

Variational Auto-encoder
GSOC project on developing auto-encoders

implemented Kullback-Leiber divergence
MethodAE class for building auto-encoders

Plan to integrate it in TMVA 
!16
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Generative Adversarial Model
GSOC project on developing a 
class for creating and training  
GAN based on the current  
TMVA DL library
MethodGAN class

plan to complete and integrate 
in the ROOT master in the 
next months
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Training of GAN can be difficult, min-max game optimisation
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Summary Deep Learning 

Recent additions
Convolutional and recurrent layers
new optimisers complementing SGD

Development ongoing!
LSTM (and also GRU) layers
GAN and VAE for event generation

!18

Available New! Upcoming

Dense Conv RNN LSTM GAN VAE

CPU

GPU
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TMVA Interfaces
External tools are available as additional methods in TMVA and they can be trained and 
evaluated as any other internal ones.

RMVA: Interface to Machine Learning methods in R
c50, xgboost, RSNNS, e1071

PYMVA: Python Interface
scikit-learn 

with RandomForest,  
Gradiend Tree Boost, Ada Boost

Keras (Theano + Tensorflow)
support model definition in Python and then training and evaluate in TMVA

Input data are copied now internally from input ROOT trees to TMVA data structure and then to 
Numpy arrays

working on direct mapping from ROOT tree to Numpy arrays
see Stefan W. presentation
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Boosted Decision Tree

Boosting is serial       Can’t construct all 
trees in parallel
Training time speed up ~1.6x with 4 
threads approaching ~3x asymptotically
To use, just add 
ROOT::EnableImplicitMT() 
to your code

10 Trees — 1 Million events

Sp
ee

d 
up

Number of threads
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Original slide by Andrew Carnes
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Cross Validation in TMVA
TMVA supports k-fold cross-validation

Integration with TMVA analysis tools (e.g. GUI)
support for “CV in application”

Hyper-parameter tuning
find optimised parameters (BDT-SVM)

Parallel execution of folds in CV 
using multi-processes execution in on a single node
foreseen to provide parallelisation in a cluster using Spark or MPI

See Kim A. presentation
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Future Developments 
Our aim is to provide to the users community efficient physics 
workflows

tools for efficient
data loading (using new RDataFrame) 
integration with external ML tools  
training of commonly used architectures
deployment and inference of trained models

TMVA efficiently connects input data to ML algorithms
we are defining new user interfaces (see Stefan W. presentation)
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Summary
Machine learning methods

Dense, Convolutional and Recurrent networks in TMVA
Excellent training + evaluation time performance
Training in parallel Boosted Decision Trees 

Workflow improvements
Cross validation analysis and parallelisation 

Future
Efficient physics workflows connecting input data to algorithms

integration with new RDataFrame and mapping to Numpy
fast deployment and inference of trained models
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Conclusions
Very active development happening in TMVA

several new features released recently and more expected for next release
thanks to many student contributions (e.g. from Google Summer of Code)

Users contributions and feedback from users are essential
ROOT is an open source project
best way to contribute is with  Pull Request in GitHub  
https://github.com/root-project/root 

ROOT Forum for user support with a category dedicated to TMVA 
       https://root.cern.ch/phpBB3/

JIRA  for reporting ROOT bugs:    https://sft.its.cern.ch/jira         
or just contact us (TMVA developers) directly for any questions or issues
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https://github.com/root-project/root
https://root.cern.ch/phpBB3/
https://sft.its.cern.ch/jira
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TMVA Contributors
Lorenzo Moneta                                    
Sergei Gleyzer                                   
Omar Zapata Mesa                                  
Kim Albertsson                                                                
Stefan Wunsch                                    
Peter Speckmeyer                                 
Simon Pfreundschuh  (GSOC 2016)            
Vladimir Ilievski    (GSOC 2017)                  
Saurav Shekkar      (GSOC 2017)                   
Manos Stergiadis   (GSOC 2018)                  
Ravi Selvam            (GSOC 2018)                   
Adrian Bevan, Tom Stevenson              
Attila Bagoly          (GSOC 2016)                  
 Paul Seyfert                                            
 Andrew Carnes                                        

Algorithm development, Integration and support
Analyzer Tools, Algorithm Development
PyMVA, RMVA, Modularity, Parallelization  and Integration
Multi-class for BDT, cross validation/evaluation and support  
Keras Interface, integration, improved data handling
Deep Learning CPU
Deep Learning CPU and GPU
New Deep Learning module, Convolutional layers
New Deep Learning module and Recurrent layers 
GPU support for CNN
New optimisers for deep learning
SVMs, Cross-Validation, Hyperparameter Tuning
Jupyter Integration, Visualization, Output
Performance optimization 
Regression, Loss Functions, BDT Parallelization 
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Anurshee Rankawat, Siddhartha Rao, Harsit Prasad (GSOC 2018)  GAN, VAE and LSTM

And with continued invaluable contributions from Andreas Hoecker, Helge Voss, Eckhard v.Thorne, Jörg Stelzer
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Deep Learning Performance 
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2.7 * Theano

Excellent throughput compared to Theano on same GPU

Network: 
• 20 input nodes,
• 5 hidden layers with 256 

nodes each, 
• tanh activation 

functions, 
• squared error loss
• batch size = 1024
• Single precision
•

Training Data: 
• Random data from a  

linear mapping  
ℝn→ℝ 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Example PyMVA with Keras
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Define the Keras model in Python

Book the method as any others of  TMVA  
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PyMVA with Keras
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Train,Test and Evaluate inside TMVA (using TMVA::Factory) 
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