

Search for heavy neutrinos in CMS

M. Kirsanov INR RAS

20th annual RDMS CMS collaboration conference

September 2018 Tashkent

Mikhail Kirsanov (INR Moscow)

1

Heavy neutrino and SM

- Neutrino oscillations mean that neutrinos have masses, which is one of the most known manifestations of physics beyond SM
- There are several models that explain the neutrino masses and the smallness of them for ordinary neutrinos
- In most such models there are heavy neutrinos so that the very small masses of ordinary neutrinos are given by the See-Saw mechanism.
- Examples of such models are Left-Right symmetric model, Heavy Majorana neutrinos.

Heavy neutrino and SM

- If the See-Saw mechanism is realised, then naturally the lightest heavy neutrino will correspond to the lightest ordinary neutrino
- In the normal hierarchy of the light neutrinos (1, 2, 3) it is mostly electron neutrino
- However, the inverse hierarchy (3, 1, 2) is also possible. The measurement of the hierarchy is very difficult, will probably take many years.
- In the inverse hierarchy the lightest is tau neutrino. For this reason the searches of heavy neutrino corresponding to tau neutrino is important -> requires reconstruction of τ

Tau lepton reconstruction

- At the energies of LHC τ is a well-defined object, including also hadronic decay modes τ_h that have larger branching than semileptonic modes
- The reconstruction algorithm improved in Run II. The HPS (hadrons plus strips) algorithm with MVA technique is used. It reconstructs separately charged hadrons from the decay and π⁰ with strips technique
- The reconstruction efficiency is of the order of 55%

LRSM: What and Why

	Standard Model	Left-Right-Symmetric Extension
Gauge group	SU(2) _L X U(1) _Y	SU(2) _L X SU(2) _R X U(1) _{B-L}
Fermions	LH doublets: $Q_L = (u^i, d^i)_L$; $L_L = (l^i, v^i)_L$ RH singlets: $Q_R = u^i_R$, d^i_R ; $L_R = l^i_R$	LH doublets: $Q_L = (u^i, d^i)_{L_i} L_L = (l^i, v^i)_L$ RH doublets: $Q_R = (u^i, d^i)_{R_i} L_R = (l^i, N^i)_R$
Neutrinos	v_{R}^{i} do not exist v_{L}^{i} are massless & pure chiral	N_{R}^{i} are heavy partners to the v_{L}^{i} N_{R}^{i} Majorana in the Minimal LRSM
Gauge bosons	W [±] _L , Ζ ⁰ , γ	W [±] _L , <mark>W[±]_R</mark> Ζ ⁰ , Ζ΄, γ

Parity Violation, in SM is not explained

LRSM explains by symmetry breaking at an intermediate mass scale

<u>Neutrino Oscillations</u> ⇒<u>Mass</u>, turns out to be very small

LRSM deploys a "see-saw mechanism" to explain smallness of mass

 $\nu_{heavy} \nu_{light} \sim | < H > |^2$

LRSM: 6 new particles: W_{R}^{\pm} Z', N_l (3 heavy neutrinos)

5

- Main production diagram: s-channel from 2 quarks
- No L-R mixing means $N_l \rightarrow off$ -shell $W_{R} + l \rightarrow jjl$
- Two-dimensional resonant structure
- Cross sections depend on $M(W_{R})$ and M(N), ~ 1 pb at 1 TeV
- Final signature is 2 leptons + 2 jets, l = e, μ , τ

Cross sections

Search status in CMS

- W' in jj, full 2016 dataset, limit up to $M_{WR} = 3.6$ TeV, full 2016+2017 datasets limit up to 3.8 TeV (EXO-17-026). This covers all LR-symmetric models with $g_R=g_L$
- Existing heavy neutrino analyses (LR symmetric):
- > at 8 TeV on the full 2012 dataset, limits in the 2D $M_{WR} M_N$ space reaching $M_{WR} = 3080$ GeV, electron and muon channel
- > At 13 TeV, 2016 dataset, τ channel, EXO-17-016
- on the full 2016 dataset, EXO-17-011, electron and muon channel

EXO-17-016 data and MC samples

- Data 2016 35.9 fb⁻¹
- Double τ_h trigger (threshold 32 GeV) datasets
- For the backgrounds: AMC@NLO DY+jets and tt +jets, madgraph W+jets, pythia8 WW, WZ, ZZ, powheg tW
- \bullet For the signal: pythia8 LRSM. It was assumed that only one $N_{\rm l}$ is reachable. NLO k-factors for the cross section

W Objects used and event selection

- At least two HPS τ_h objects, p_T cut 70 GeV, $|\eta| < 2.1$ to ensure that all object is within the tracker range (2.4)
- At least two PF jets (tracker region only, p_T cut 50 GeV)
- $\Delta R > 0.4$ between any 2 objects
- Missing $p_T > 50 \text{ GeV}$
- $m(\tau_{h1}, \tau_{h2}) > 100 \text{ GeV}$ to avoid BG from Z
- Signal efficiency with these cuts at M_{WR} =4 TeV is 15.7% (4.76% at 1 TeV)
- Reminder: $Br(\tau, \tau) \rightarrow (\tau_{h1}, \tau_{h2})$ is 42%

Variables

 $m(\tau_{\rm h,1},\tau_{\rm h,2},j_1,j_2,p_{\rm T}^{\rm miss}) = \sqrt{(E_{\tau_{\rm h,1}} + E_{\tau_{\rm h,2}} + E_{j_1} + E_{j_2} + p_{\rm T}^{\rm miss})^2 - (\overrightarrow{p}_{\tau_{\rm h,1}} + \overrightarrow{p}_{\tau_{\rm h,2}} + \overrightarrow{p}_{j_1} + \overrightarrow{p}_{j_2} + \overrightarrow{p}_{\rm T}^{\rm miss})^2}.$

Full reconstruction of invariant mass is impossible due to escaping neutrinos
Partial mass is used

Backgrounds

tt, Z+jets – from data CR with τ->μ
QCD dijets – ABCD method using loose and tight τ_h
W+jets, VV – from MC (these are smaller BG)

Results

Results (2)

• LRSM W_R decaying dominantly to quarks and N_{τ} is excluded in the two-dimensional region up to MWR = 3.5 TeV

 This region is also excluded in the W' -> jj analysis using the same data sample (full 2016)

 Requires improvements of technique to have a better sensitivity than the dijet analysis

KIN: Construction and muon channels (EXO-17-011)

Electron channel

Muon channel

No significant excess observed

Results 2D

Muon channel

Electron channel

Summary on LRSM e and µ channels

LRSM new particle W_R decaying to N_I with I = e, μ is excluded in the wide region of the 2D mass space M_{WR} – M_N reaching the value of M_{WR} = 4.4 TeV
Expecting the full dataset 2016 – 2018, now the paper on the 2016 data is being published

Further searches

• For the classical LRSM model most important to improve the sensitivity in terms of the mass reach is the LHC collision energy as the cross sections are not small

- However, it is possible that $g_R < g_L$. There are models with concrete predictions, for example $g_R = 0.6g_L$. Then statistics and luminosity become more important.
- In the analysis presented here the tt background is taken from the data $e\mu$ sample. The statistics at high masses is small, which limits the sensitivity
- Some time ago we studied the possibility to perform the 2D analysis (analyse simultaneously m(ljj) and m(lljj)). This is also better to do with good statistics

Results

Expected 95% C.L. limits (median) for MWR = 2000 GeV

Summary

- Heavy neutrinos of different models are extensively searched for in CMS
- These searches will certainly continue, new searches with new models can be initiated
- Some new interesting possibilities to improve the sensitivity of these searches appear with more statistics