

Study of P-wave B⁰_s States at CMS

Sergey Polikarpov^{1,2}

¹LPI RAS, ²NRNU MEPhI

CMS-BPH-16-003, arXiv:1809.03578

RDMS 2018, Tashkent, 11-15 September 2018

12 September 2018

Introduction

10 Sep 2018

arXiv:1809.03578v1 [hep-ex]

The paper (BPH-16-003) was submitted to arXiv and EPJC on Monday

Appeared on arXiv today

Preliminary results were released as PAS in June

CMS-BPH-16-003, arXiv:1809.03578 Studies of $B_{s2}^*(5840)^0$ and $B_{s1}(5830)^0$ mesons including the observation of the $B_{s2}^*(5840)^0 \rightarrow B^0 K_s^0$ decay in proton-proton collisions at $\sqrt{s} = 8$ TeV

The CMS Collaboration*

Abstract

Measurements of $B_{s2}^*(5840)^0$ and $B_{s1}(5830)^0$ mesons are performed using a data sample of proton-proton collisions corresponding to an integrated luminosity of 19.6 fb⁻¹, collected with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV. The analysis studies *P*-wave B_s^0 meson decays into $B^{(*)+}K^-$ and $B^{(*)0}K_s^0$, where the B^+ and B^0 mesons are identified using the decays $B^+ \rightarrow J/\psi K^+$ and $B^0 \rightarrow J/\psi K^*(892)^0$. The masses of the *P*-wave B_s^0 meson states are measured and the natural width of the $B_{s2}^*(5840)^0$ state is determined. The first measurement of the mass difference between the charged and neutral B* mesons is also presented. The $B_{s2}^*(5840)^0$ decay to $B^0K_s^0$ is observed, together with a measurement of its branching fraction relative to the $B_{s2}^*(5840)^0 \rightarrow B^+K^-$ decay.

Submitted to the European Physical Journal C

Introduction (P-wave B⁰_s states)

The decay $B_{s1} \rightarrow B^+K^-$ corresponds to (in J^P) $1^+ \rightarrow 0^-0^-$ and is forbidden (need L=1 to conserve J, but then P is not conserved)

The decay $B_{s1} \rightarrow B^{*+}K^{-}$ corresponds to (in J^{P}) $1^{+} \rightarrow 1^{-}0^{-}$ and $\frac{3}{2}^{-} \rightarrow \frac{1}{2}^{+}0^{-}$ in j^{p} In HQET j^{p} is also conserved \Rightarrow it cannot proceed in S-wave; but can proceed in D-wave. Similarly, $B_{s2}^{*} \rightarrow B^{+}K^{-}$ and $B_{s2}^{*} \rightarrow B^{*+}K^{-}$ decays are expected to proceed in D-wave.

Introduction (previous results)

P-wave B_s^0 states were observed and studied only by CDF, D0, and LHCb in B⁺K⁻ channel

Result	CDF 2008 [2]	D0 2008 [3]	LHCb 2013 [4]	CDF 2014 [5]	
$N(\mathrm{B}^*_{\mathrm{s2}} ightarrow \mathrm{B}^+\mathrm{K}^-)$	95 ± 23	125 ± 25	3140 ± 100	1110 ± 60	
$N(B^*_{s2} \rightarrow B^{*+}K^-)$	—	—	307 ± 46	$?? \sim 100$	
$N(\mathrm{B_{s1}} ightarrow \mathrm{B^{*+}K^{-}})$	39 ± 9	25 ± 10	750 ± 36	280 ± 40	
$M(B_{s2}^*)$, MeV	5839.6 ± 0.7	5839.6 ± 1.3	5839.99 ± 0.21	5839.7 ± 0.2	
$M(B_{s1})$, MeV	5829.4 ± 0.7	—	5828.40 ± 0.41	5828.3 ± 0.5	
$M(B_{s2}^*) - M(B^+) - M(K^-)$, MeV	66.96 ± 0.41	66.7 ± 1.1	67.06 ± 0.12	66.73 ± 0.19	
$M(B_{s1}) - M(B^{*+}) - M(K^{-})$, MeV	10.73 ± 0.25	11.5 ± 1.4	10.46 ± 0.06	10.35 ± 0.19	
$\Gamma(B_{s2}^*)$, MeV	_	— ,	1.56 ± 0.49	1.4 ± 0.4	
$\Gamma(B_{s1})$, MeV	_	—	_	0.5 ± 0.4	
				7 >	
<u>Phys. Rev. Lett. 110, 1</u>	<u>51803 (2013)</u>		<u>Phys. Rev. D 90/0</u>	<u>12013 (2014)</u>	
High Rev D Constraints (2013) $High Rev D Constraints (2013)$ $High Rev D Constraints (2013$					
0 20 40 60 80 10 m(E	$B^{+}K^{-}$) - m(B^{+}) - m(K^{-}) [MeV	200 0 0.0	1 0.02 0.03 0.04 0.05 0.0	6 0.07 0.08 0.09 0.1 (B ⁺ K ⁻) Q Value (GeV/c ²) ∠	

Data and event selection

2012 dataset (19.6 fb⁻¹), trigger optimized to select $B \rightarrow J/\psi$... decays, where $J/\psi \rightarrow \mu^+\mu^-$

B⁺ (B⁰) candidates obtained combining J/ ψ with 1(2) tracks: B⁺ \rightarrow J/ ψ K⁺ and B⁰ \rightarrow J/ ψ K⁺ π^- B meson vertex required to be displaced from the PV in the transverse (*xy*) plane B meson momentum required to point to the PV in the *xy* plane

Modelled with triple Gaussian function with common mean for signal, exponential for bkg additional small contribution to account for Cabibbo suppressed $B^+ \rightarrow J/\psi \pi^+$ decay

The B⁺ invariant mass resolution is consistent between data and MC Effective resolution* is about 24 MeV * $\sigma_{eff} = \sqrt{f_1 \sigma_1^2 + f_2 \sigma_2^2 + (1 - f_1 - f_2) \sigma_3^2}$

A small difference of \sim 3% is used in the estimation of the systematic uncertainties

Now combine B⁺ with a track from the same PV

B⁺h⁻ invariant mass distributions

MeV

3500 -

3000

CMS

(a)

Data

Comb. bkg.

Fit Signals 19.6 fb⁻¹ (8 TeV)

To describe the signal B⁺K⁻ invariant mass distribution, we obtain the yields of reflections from excited B⁰ decays using data (fit to $B^+\pi^-$ invariant mass distribution) and their shapes using MC

(see slide in backup for details)

$B^+\pi^-$ invariant mass distribution

To obtain yields of these reflections, we fit $B^+\pi^-$ invariant mass distribution:

3 D-wave RBW functions convolved with resolutions (*from MC*)

+ $(x-x_0)^a \bullet Pol_m(x)$ for background, x_0 is threshold value, $Pol_m(x)$ is polynomial of degree m

+ (small) contributions from $B_{s1,2}^{(*)}$

In the baseline fit, masses and natural widths of excited B⁰ states are fixed to PDG

The fit returns yields of about 8500, 10500 and 12000 events for the $B_2^* \rightarrow B^+\pi^-$, $B_2^* \rightarrow B^{*+}\pi^-$, and $B_1^* \rightarrow B^+\pi^-$ decays, respectively

Shape of reflections from $B^{*0} \rightarrow B^{(*)+}\pi^-$ decays in B^+K^- invariant mass distribution

The shapes obtained using simulated events are approximated with a product of one-sided double-Gaussian function and sum of two Gaussian functions

B⁺K⁻ invariant mass distribution

Now we fit B⁺K⁻ invariant mass distribution:

3 D-wave RBW functions convolved with resolutions

+ $(x-x_0)^a \bullet Pol_6(x)$ for background, x_0 is threshold value

+ contributions from excited B^0 (shapes fixed to MC, yields fixed to the fit results to the B⁺ π ⁻ invariant mass distribution)

B⁰K⁰_S final state

The resolution parameters and the shape of $K \leftrightarrow \pi$ swapped component are fixed from simulation (see backup)

Fraction of swapped component with respect to signal = $(18.9\pm3.0)\%$ in the B⁰ signal region of $\pm 2\sigma$

B⁰K⁰_s invariant mass distribution

Fit:

- **3** D-wave RBW functions \cap convolved with resolutions
- $(x-x_0)^a \bullet Pol_1(x)$ for bkg, x₀ is threshold value

3 contributions from $K \leftrightarrow \pi$ swap 0 (yields fixed relative to signal: S*0.189)

Measuring BF ratios

Formulae and efficiencies ratios for all 6 measured ratios are in backup

Sources of systematic uncertainty

Systematic uncertainties on the branching fraction ratios are related to:

Choice of the fit model

separate uncertainties related to the fits of B⁺ π ⁻, B⁺K⁻ and B⁰K⁰_S invariant mass distributions; largest deviation of the results under changes of the fit model is used as systematic uncertainty

Track reconstruction efficiency (3.9% per extra track)

7.8% since 2 more tracks to reconstruct in $B^0K^0_S$ final state

Mass resolution

largest change of the resulting ratios under simultaneous variations of resolution by $\pm 3\%$

➤ Fraction of K↔π swapped component largest change of the resulting ratios under variations of this fraction by ±3%

\succ Uncertainty on m_{B*}-m_B

largest change of the resulting ratios under variations of m_{B^*} - m_B by ± PDG uncertainty

\succ Non-K^{*} contribution in B⁰→J/ψK⁺π⁻ decay

estimated by fitting background-subtracted $K^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ invariant mass distribution

Finite size of the simulation samples uncertainties from the previous slide

Next slide shows these uncertainties and the total systematic uncertainties for the 6 measured ratios 15

Systematic uncertainties in the branching fraction ratios

 $R_{2}^{0\pm} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})}$ $R_{1}^{0\pm} = \frac{\mathcal{B}(B_{s1} \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s1} \to B^{*+}K^{-})}$

l	incertaint	ty in %
Source	$R_2^{0\pm}$	$R_1^{0\pm}$
Track reconstruction efficiency	7.8	7.8
$m_{\mathrm{B}^{+}\pi^{-}}$ distribution model	2.5	2.0
$m_{\rm B^+K^-}$ distribution model	2.4	4.6
$m_{\mathrm{B}^{0}\mathrm{K}^{0}_{\mathrm{S}}}$ distribution model	14	8.1
Mass resolution	0.7	2.2
Fraction of KPS	2.6	2.6
Non-K ^{*0} contribution	5.0	5.0
Finite size of simulated samples	1.2	1.2
Total	18	14

Systematic uncertainty in %

$$\begin{split} R_{2*}^{\pm} &= \frac{\mathcal{B}(B_{s2}^{*} \to B^{*+}K^{-})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} \ R_{2*}^{0} &= \frac{\mathcal{B}(B_{s2}^{*} \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})} \\ R_{\sigma}^{\pm} &= \frac{\sigma(pp \to B_{s1} \dots) \times \mathcal{B}(B_{s1} \to B^{*+}K^{-})}{\sigma(pp \to B_{s2}^{*} \dots) \times \mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} \\ R_{\sigma}^{0} &= \frac{\sigma(pp \to B_{s1} \dots) \times \mathcal{B}(B_{s1} \to B^{*0}K_{s}^{0})}{\sigma(pp \to B_{s2}^{*} \dots) \times \mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})} \end{split}$$

Source	R_{2*}^{\pm}	R_{2*}^{0}	R_{σ}^{\pm}	R^0_σ
$m_{\mathrm{B}^{+}\pi^{-}}$ distribution model	2.9		2.7	
$m_{\rm B^+K^-}$ distribution model	17		7.1	
$m_{\mathrm{B}^{0}\mathrm{K}^{0}_{\mathrm{S}}}$ distribution model		13		24
Mass resolution	1.2	3.0	1.5	1.1
Uncertainties in $M_{B^*}^{PDG} - M_B^{PDG}$	7.7	4.8		
Finite size of simulated samples	1.1	1.3	1.1	1.3
Total	19	15	7.8	24

Systematic uncertainties

Four mass differences obtained from the fits

$$\Delta M_{B_{s2}^*}^{\pm} = M(B_{s2}^*) - M_{B^+}^{PDG} - M_{K^-}^{PDG}, \qquad \Delta M_{B_{s1}}^{\pm} = M(B_{s1}) - M_{B^{*+}}^{PDG} - M_{K^-}^{PDG}$$

$$\Delta M_{B_{s2}^*}^0 = M(B_{s2}^*) - M_{B^0}^{PDG} - M_{K_S^0}^{PDG}, \qquad \Delta M_{B_{s1}}^0 = M(B_{s1}) - M_{B^{*0}}^{PDG} - M_{K_S^0}^{PDG}$$

allow to measure the mass differences between neutral and charged B^(*) mesons:

$$M_{B^{0}} - M_{B^{+}} = \Delta M_{B_{s2}^{*}}^{\pm} - \Delta M_{B_{s2}^{*}}^{0} + M_{K^{-}}^{PDG} - M_{K_{S}^{0}}^{PDG}$$
$$M_{B^{*0}} - M_{B^{*+}} = \Delta M_{B_{s1}}^{\pm} - \Delta M_{B_{s1}}^{0} + M_{K^{-}}^{PDG} - M_{K_{S}^{0}}^{PDG}$$

Additional systematic uncertainties are related to

> Shift from reconstruction: values obtained from the reconstructed MC differ a bit from those in the generation configuration. Our measurements are corrected by these shifts, and value of each shift is used as systematic uncertainty.

> Detector misalignment: 18 additional MC samples for each measurement are produced with differently distorted detector geometry, and maximum deviation from the case of no misalignment is taken as systematic uncertainty.

Source	$\Delta M^\pm_{ m B^*_{s2}}$	$\Delta M^{\pm}_{ m B_{s1}}$	$\Delta M^0_{ m B^*_{s2}}$	$\Delta M^0_{ m B_{s1}}$	$M_{\mathrm{B}^0} - M_{\mathrm{B}^+}$	$M_{{ m B}^{*0}}-M_{{ m B}^{*+}}$	$\Gamma_{B^{\ast}_{s2}}$
$m_{\rm B^+\pi^-}$ distribution model	0.024	0.008			0.024	0.008	0.11
$m_{\rm B^+K^-}$ distribution model	0.011	0.043			0.011	0.043	0.11
$m_{\rm B^0K_c^0}$ distribution model			0.039	0.038	0.039	0.038	
Uncertainties in $M_{B^*}^{PDG} - M_B^{PDG}$	0.012	0.003	0.003	0.0001	0.012	0.003	0.03
Shift from reconstruction	0.056	0.044	0.050	0.042	0.075	0.061	
Detector misalignment	0.036	0.005	0.031	0.006	0.038	0.008	0.15
Mass resolution	0.007	0.005	0.005	0.005	0.009	0.007	0.20
Total	0.073	0.063	0.071	0.057	0.098	0.085	0.30

<u>CMS-BPH-16-003</u>, <u>arXiv:1809.03578</u> 17

Results

Uncertainties here are, respectively, statistical, systematic, related to PDG uncertainties

$$R_{2}^{0\pm} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = 0.432 \pm 0.077 \pm 0.075 \pm 0.021,$$

$$\frac{arXiv:1202.1224}{arXiv:1607.02812}$$

$$R_{1}^{0\pm} = \frac{\mathcal{B}(B_{s1} \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s1} \to B^{*+}K^{-})} = 0.49 \pm 0.12 \pm 0.07 \pm 0.02,$$

$$R_{2*}^{\pm} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{*+}K^{-})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = 0.081 \pm 0.021 \pm 0.015,$$

$$R_{2*}^{0} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})} = 0.093 \pm 0.086 \pm 0.014.$$

$$R_{\sigma}^{\pm} = \frac{\sigma(pp \to B_{s1}X) \mathcal{B}(B_{s1} \to B^{*+}K^{-})}{\sigma(pp \to B_{s2}X) \mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})} = 0.266 \pm 0.079 \pm 0.063.$$
Theory: 0.43
$$\frac{arXiv:1202.1224}{arXiv:1202.1224},$$

$$\frac{arXiv:1202.124}{arXiv:1202.1224},$$

$$\frac{arXiv:1202.124}{arXiv:1202.124},$$

$$\frac{arXiv:1202.124}{arXiv:1202.124},$$

$$\frac{arXiv:1202.124}{arXiv:1202.124},$$

$$\frac{arXiv:1202.124}{arXiv:1202.124},$$

$$\frac{arXiv:1202.124}{arX$$

Results are in agreement with existing measurements of LHCb and CDF

CMS 2018: <u>CMS-BPH-16-003</u>, <u>arXiv:1809.03578</u> LHCb 2013: <u>doi:10.1103/PhysRevLett.110.151803</u> CDF 2014: <u>doi:10.1103/PhysRevD.90.012013</u>

Results

	$\Delta M^{\pm}_{\mathrm{B}^{*}_{\mathrm{s}2}} = M(\mathrm{B}^{*}_{\mathrm{s}2}) - M^{\mathrm{PDG}}_{\mathrm{B}^{+}} - N$	$M_{\rm K^-}^{\rm PDG} = 66.87 \pm 0.09 \pm 0.07 {\rm MeV},$
new	$\Delta M^0_{\mathrm{B}^*_{\mathrm{s}2}} = M(\mathrm{B}^*_{\mathrm{s}2}) - M^{\mathrm{PDG}}_{\mathrm{B}^0} - N$	$M_{\rm K_S^0}^{\rm PDG} = 62.37 \pm 0.48 \pm 0.07 { m MeV},$
	$\Delta M_{\mathrm{B}_{\mathrm{s}1}}^{\pm} = M(\mathrm{B}_{\mathrm{s}1}) - M_{\mathrm{B}^{*+}}^{\mathrm{PDG}} - N$	$M_{\rm K^-}^{\rm PDG} = 10.45 \pm 0.09 \pm 0.06 {\rm MeV},$
new	$\Delta M_{\rm B_{s1}}^0 = M({\rm B_{s1}}) - M_{\rm B^{*0}}^{\rm PDG} - N$	$M_{\rm K_S^0}^{\rm PDG} = 5.61 \pm 0.23 \pm 0.06 { m MeV}.$

$$\Gamma_{B^*_{s2}} = 1.52 \pm 0.34 \pm 0.30 \, \text{MeV}$$

Comparison to previous measurements

	M(B [*] _{s2})−M(B ⁺)−M(K ⁻)	M(B _{s1})-M(B [*] +)-M(K ⁻)	Γ(B _{s2})
LHCb	67.06±0.12	10.46±0.06	1.56±0.49
CDF	67.73±0.19	10.35±0.19	1.4 ± 0.44
CMS	66.87±0.12	10.45±0.11	1.52±0.43

2nd and 3rd column are consistent with existing measurements of LHCb and CDF Measurement of $M(B_{s2}^*)-M(B^+)-M(K^-)$ agrees with LHCb, not with CDF

CMS 2018: CMS-BPH-16-003, arXiv:1809.03578 LHCb 2013: doi:10.1103/PhysRevLett.110.151803 CDF 2014: doi:10.1103/PhysRevD.90.012013

Results

We also measure the mass differences between neutral and charged B^(*) mesons:

$$M_{\rm B^0} - M_{\rm B^+} = 0.57 \pm 0.49 \pm 0.10 \pm 0.02 \,{
m MeV}$$

 $M_{\rm B^{*0}} - M_{\rm B^{*+}} = 0.91 \pm 0.24 \pm 0.09 \pm 0.02 \,{
m MeV}$

The first mass difference is known with much better precision: (0.31±0.06) MeV [PDG] while there are no measurements for the second one.

We present a new method to measure these mass differences! It may become very precise with more data

Summary

First observation (6.3 σ) of the $B_{s2}^* \rightarrow B^0 K_S^0$ decay

First evidence (3.9 σ) for the $B_{s1} \rightarrow B^{*0}K_S^0$ decay

 $\text{Measure 4 BF ratios } \frac{\mathcal{B}(B_{s2}^* \to B^0 K_s^0)}{\mathcal{B}(B_{s2}^* \to B^+ K^-)} \text{,} \frac{\mathcal{B}(B_{s1} \to B^{*0} K_s^0)}{\mathcal{B}(B_{s1} \to B^{*+} K^-)} \text{,} \frac{\mathcal{B}(B_{s2}^* \to B^{*+} K^-)}{\mathcal{B}(B_{s2}^* \to B^+ K^-)} \text{,} \frac{\mathcal{B}(B_{s2}^* \to B^{*0} K_s^0)}{\mathcal{B}(B_{s2}^* \to B^0 K_s^0)}$

 $\begin{array}{ll} \text{Measure 2 BF x σ ratios} & \frac{\sigma(pp \rightarrow B_{s1} \dots) \times \mathcal{B}(B_{s1} \rightarrow B^{*+}K^{-})}{\sigma(pp \rightarrow B_{s2}^{*} \dots) \times \mathcal{B}(B_{s2}^{*} \rightarrow B^{+}K^{-})} \text{,} & \frac{\sigma(pp \rightarrow B_{s1} \dots) \times \mathcal{B}(B_{s1} \rightarrow B^{*0}K_{s}^{0})}{\sigma(pp \rightarrow B_{s2}^{*} \dots) \times \mathcal{B}(B_{s2}^{*} \rightarrow B^{0}K_{s}^{0})} \end{array}$

Measure 6 mass differences and the B_{s2}^* natural width

- $M(B_{s2}^*)-M(B^+)-M(K^-)$
- $M(B_{s1})-M(B^{*+})-M(K^{-})$
- $M(B_{s2}^*)-M(B^0)-M(K_S^0)$ (first measurement)
- $M(B_{s1})-M(B^{*0})-M(K_{s}^{0})$ (first measurement)
- $M(B^{*+})-M(B^{+})$
- $M(B^{*0})-M(B^{0})$ (first measurement)
- $\Gamma(B_{s2}^*)$

We also report the mass measurements $M(B_{s2}^*)$ and $M(B_{s1})$ (in backup)

The results are in agreement with previous measurements, if they exist

Thank you !

Overview

B⁺ is reconstructed in J/ ψ K⁺ channel B⁰ is reconstructed in J/ ψ K⁺ π ⁻ channel

"Reflections":

From $B^{**} \rightarrow B^{(*)+}\pi^-$ in B^+K^- channel, yields fixed from the fit to $B^+\pi^-$ invariant mass; From $K \leftrightarrow \pi$ swap in $B^0K^0_S$ channel, yields fixed relative to the signal yields

We also measure masses, mass differences and $\Gamma(B_{s2}^*)$ in these decays

$$\begin{split} R_{2}^{0\pm} &= \frac{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = 0.432 \pm 0.077 \text{ (stat)} \pm 0.075 \text{ (syst)} \pm 0.021 \text{ (PDG)} \\ R_{1}^{0\pm} &= \frac{\mathcal{B}(B_{s1} \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s1} \to B^{*+}K^{-})} = 0.492 \pm 0.122 \text{ (stat)} \pm 0.068 \text{ (syst)} \pm 0.024 \text{ (PDG)} \\ R_{2*}^{\pm} &= \frac{\mathcal{B}(B_{s2}^{*} \to B^{*+}K^{-})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = 0.081 \pm 0.021 \text{ (stat)} \pm 0.015 \text{ (syst)}, \\ R_{2*}^{0\pm} &= \frac{\mathcal{B}(B_{s2}^{*} \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})} = 0.093 \pm 0.086 \text{ (stat)} \pm 0.014 \text{ (syst)}, \\ R_{\sigma}^{\pm} &= \frac{\sigma(\text{pp} \to B_{s1} \dots) \times \mathcal{B}(B_{s1} \to B^{*+}K^{-})}{\sigma(\text{pp} \to B_{s1}^{*} \dots) \times \mathcal{B}(B_{s1}^{*} \to B^{*}K^{-})} = 0.233 \pm 0.019 \text{ (stat)} \pm 0.018 \text{ (syst)} \\ R_{\sigma}^{0} &= \frac{\sigma(\text{pp} \to B_{s1} \dots) \times \mathcal{B}(B_{s1} \to B^{*0}K_{s}^{0})}{\sigma(\text{pp} \to B_{s2}^{*} \dots) \times \mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})} = 0.266 \pm 0.079 \text{ (stat)} \pm 0.063 \text{ (syst)} \\ \Delta M_{B_{s2}}^{\pm} &= M(B_{s2}^{*}) - M(B^{+}) - M(K^{-}) = 66.870 \pm 0.093 \text{ (stat)} \pm 0.073 \text{ (syst)} \text{ MeV}, \\ \Delta M_{B_{s2}}^{0} &= M(B_{s2}^{*}) - M(B^{*+}) - M(K^{-}) = 10.452 \pm 0.089 \text{ (stat)} \pm 0.063 \text{ (syst)} \text{ MeV}, \\ \Delta M_{B_{s1}}^{\pm} &= M(B_{s1}) - M(B^{*+}) - M(K_{s}^{-}) = 5.61 \pm 0.23 \text{ (stat)} \pm 0.063 \text{ (syst)} \text{ MeV}, \\ \Delta M_{B_{s1}}^{0} &= M(B_{s1}) - M(B^{*0}) - M(K_{s}^{0}) = 5.61 \pm 0.23 \text{ (stat)} \pm 0.063 \text{ (syst)} \text{ MeV}, \\ \Delta M_{B_{s1}}^{0} &= M(B_{s1}) - M(B^{*+}) - M(K_{s}^{-}) = 10.452 \pm 0.089 \text{ (stat)} \pm 0.063 \text{ (syst)} \text{ MeV}, \\ \Delta M_{B_{s1}}^{0} &= M(B_{s1}) - M(B^{*0}) - M(K_{s}^{0}) = 5.61 \pm 0.23 \text{ (stat)} \pm 0.063 \text{ (syst)} \text{ MeV}, \\ \Delta M_{B_{s1}}^{0} &= M(B_{s1}) - M(B^{*0}) - M(K_{s}^{0}) = 5.61 \pm 0.23 \text{ (stat)} \pm 0.064 \text{ (syst)} \text{ MeV}, \\ \Delta M_{B_{s1}}^{0} &= M(B_{s1}) - M(B^{*0}) - M(K_{s}^{0}) = 5.61 \pm 0.23 \text{ (stat)} \pm 0.06 \text{ (syst)} \text{ MeV}, \\ M(B_{s2}^{*}) &= 5839.86 \pm 0.09 \pm 0.07 \pm 0.15 \text{ MeV} \\ \end{array}$$

 $M(B_{\rm s1}) = 5828.78 \pm 0.09 \pm 0.06 \pm 0.28 \,\rm MeV$

 $m_{B^0} - m_{B^+} = 0.57 \pm 0.49 \text{ (stat)} \pm 0.10 \text{ (syst)} \pm 0.02 \text{ (PDG)} \text{ MeV}$ $m_{B^{*0}} - m_{B^{*+}} = 0.91 \pm 0.24 \text{ (stat)} \pm 0.09 \text{ (syst)} \pm 0.02 \text{ (PDG)} \text{ MeV}$

 $\Gamma(B_{s2}^{*}) = 1.52 \pm 0.34 \,(stat) \pm 0.30 \,(syst) \,\text{MeV}$

CMS-BPH-16-003, arXiv:1809.03578

> All the preliminary measurements

Highlighted in yellow are the first measurements

BACKUP

Data and event selection

2012 dataset (19.6 fb⁻¹), trigger optimized to select $B \rightarrow J/\psi$... decays Muons matched to trigger; $p_T(\mu^{\pm}) > 3.5 \text{ GeV/c}$, $|\eta(\mu^{\pm})| < 2.2$ Standard CMS "high purity" tracks, $p_T > 1 \text{ GeV}$

```
P_{vtx}(B) > 1\%
PV \text{ is chosen as the one with best pointing angle}
L_{xy}/\sigma_{Lxy}(B) > 5.0
Cos\alpha_{xy} > 0.99 \text{ (B momentum points to PV in xy plane)}
B \text{ mass in } \sim \pm 2\sigma_{eff} \text{ from PDG}
K^{+}
```

р

ΡV

PV

B⁺**K**⁻ **channel**: K⁻ is chosen from PV track collection

B⁰K⁰_S channel:

M(K⁺ π ⁻) in ±90 MeV from K*(892) mass,

 $M(K^+,K^-) > 1.035 \text{ GeV}$ to cut out $B^0_s \rightarrow J/\psi \phi$

K/ π mass assignment: chose the candidate closer to K*(892) mass

 $\begin{array}{ll} K^0_S \mbox{ is build from displaced 2-prong vertices} \\ \cos \alpha_{xy} & > 0.999 \mbox{ (} K^0_S \mbox{ momentum points to PV in xy plane)} \end{array}$

K⁻

р

K+

K⁰

р

B⁺K⁻ signal extraction logic

The shapes of reflections from $B^0_{s1,2}$ decays in $B^+\pi^-$ invariant mass

28

The shapes of reflections from B^{0*} decays in B⁺K⁻ invariant mass

B⁰ invariant mass distribution (MC)

B⁰ is reconstructed in the decay to $J/\psi K^+\pi^-$, where kaon and pion can be misidentified (swapped) in the reconstruction. The selection requirements are

 $M(K^{+}\pi^{-})$ in ±90 MeV from K*(892) mass,

 $M(K^{+},K^{-}) > 1.035 \text{ GeV to cut out } B_s^0 \rightarrow J/\psi\varphi$, as in P5' analysis

 K/π mass assignment: as in P5', chose the candidate closer to $K^*(892)$ mass

We use MC to obtain the signal resolution and shape of $K{\leftrightarrow}\pi$ swapped component:

B⁰ invariant mass distribution

The resolution parameters and the shape of $K \leftrightarrow \pi$ swapped component are fixed from simulation (see backup)

The B⁰ signal region [5245, 5313] MeV includes ~220000 signal candidates and ~41000 K $\leftrightarrow \pi$ swap candidates \Rightarrow "fraction of swapped component w.r.t. signal" = (18.9±0.3)%

Vary the signal resolution by + and – 3% (see B^+ fit) \Rightarrow variation of this fraction is (18.9±3.0)% (uncertainty will be considered as systematics source)

B⁰K⁰_S signal significance

Estimated using likelihood ratio of fits with and without signal component

P = TMath.Prob(Log L_S – Log L_0 , 1) Signif = $\sqrt{2}$ · Tmath.ErfcInverse(P)

where L_0 corresponds to fit with signal L_S corresponds to fit without signal

For these fits, systematic uncertainties of resolution and fraction of swapped component are included as Gaussian constraints in likelihood; Mass and Γ uncertainties from PDG are as well Gaussian-constrained

Obtained significance is:

6.3 σ for the $B_{s2}^* \rightarrow B^0 K_S^0$ decay **3.9** σ for the $B_{s1} \rightarrow B^{*0} K_S^0$ decay

They vary in [6.3, 7.0] σ and [3.6, 3.9] σ with variations of fit range and bkg model

Measured BF ratios

CMS-BPH-16-003, arXiv:1809.03578

$$\begin{split} R_{2}^{0\pm} &= \frac{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = \frac{N(B_{s2}^{*} \to B^{0}K_{s}^{0})}{N(B_{s2}^{*} \to B^{+}K^{-})} \times \frac{\varepsilon(B_{s2}^{*} \to B^{+}K^{-})}{\varepsilon(B_{s2}^{*} \to B^{0}K_{s}^{0})} \times \\ &\times \frac{\mathcal{B}(B^{+} \to J/\psi K^{+})}{\mathcal{B}(B^{0} \to J/\psi K^{*0})\mathcal{B}(K^{*0} \to K^{+}\pi^{-})\mathcal{B}(K_{s}^{0} \to \pi^{+}\pi^{-})} \\ R_{1}^{0\pm} &= \frac{\mathcal{B}(B_{s1} \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s1} \to B^{*0}K_{s}^{0})} = \frac{N(B_{s1} \to B^{*0}K_{s}^{0})}{N(B_{s1} \to B^{*0}K_{s}^{0})} \times \frac{\varepsilon(B_{s1} \to B^{*+}K^{-})}{\varepsilon(B_{s1} \to B^{*0}K_{s}^{0})} \times \\ &\times \frac{\mathcal{B}(B^{+} \to J/\psi K^{+})}{\mathcal{B}(B^{0} \to J/\psi K^{*0})\mathcal{B}(K^{*0} \to K^{+}\pi^{-})\mathcal{B}(K_{s}^{0} \to \pi^{+}\pi^{-})'} \end{split}$$

$$R_{2*}^{\pm} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{*+}K^{-})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = \frac{N(B_{s2}^{*} \to B^{*+}K^{-})}{N(B_{s2}^{*} \to B^{+}K^{-})} \times \frac{\epsilon(B_{s2}^{*} \to B^{+}K^{-})}{\epsilon(B_{s2}^{*} \to B^{*+}K^{-})},$$

$$R_{2*}^{0} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})} = \frac{N(B_{s2}^{*} \to B^{*0}K_{s}^{0})}{N(B_{s2}^{*} \to B^{0}K_{s}^{0})} \times \frac{\epsilon(B_{s2}^{*} \to B^{0}K_{s}^{0})}{\epsilon(B_{s2}^{*} \to B^{*0}K_{s}^{0})},$$

$$R_{\sigma}^{\pm} = \frac{\sigma(\mathrm{pp} \to \mathrm{B}_{\mathrm{s1}} \dots) \times \mathcal{B}(\mathrm{B}_{\mathrm{s1}} \to \mathrm{B}^{*+}\mathrm{K}^{-})}{\sigma(\mathrm{pp} \to \mathrm{B}_{\mathrm{s2}}^{*} \dots) \times \mathcal{B}(\mathrm{B}_{\mathrm{s2}}^{*} \to \mathrm{B}^{+}\mathrm{K}^{-})} = \frac{N(\mathrm{B}_{\mathrm{s1}} \to \mathrm{B}^{*+}\mathrm{K}^{-})}{N(\mathrm{B}_{\mathrm{s2}}^{*} \to \mathrm{B}^{+}\mathrm{K}^{-})} \times \frac{\epsilon(\mathrm{B}_{\mathrm{s2}}^{*} \to \mathrm{B}^{+}\mathrm{K}^{-})}{\epsilon(\mathrm{B}_{\mathrm{s1}} \to \mathrm{B}^{*+}\mathrm{K}^{-})},$$

$$R^{0}_{\sigma} = \frac{\sigma(\mathrm{pp} \to \mathrm{B}_{\mathrm{s1}} \dots) \times \mathcal{B}(\mathrm{B}_{\mathrm{s1}} \to \mathrm{B}^{*0}\mathrm{K}^{0}_{\mathrm{s}})}{\sigma(\mathrm{pp} \to \mathrm{B}^{*}_{\mathrm{s2}} \dots) \times \mathcal{B}(\mathrm{B}^{*}_{\mathrm{s2}} \to \mathrm{B}^{0}\mathrm{K}^{0}_{\mathrm{s}})} = \frac{N(\mathrm{B}_{\mathrm{s1}} \to \mathrm{B}^{*0}\mathrm{K}^{0}_{\mathrm{s}})}{N(\mathrm{B}^{*}_{\mathrm{s2}} \to \mathrm{B}^{0}\mathrm{K}^{0}_{\mathrm{s}})} \times \frac{\epsilon(\mathrm{B}^{*}_{\mathrm{s2}} \to \mathrm{B}^{0}\mathrm{K}^{0}_{\mathrm{s}})}{\epsilon(\mathrm{B}_{\mathrm{s1}} \to \mathrm{B}^{*0}\mathrm{K}^{0}_{\mathrm{s}})},$$

Relative efficiencies

$$\begin{split} & \frac{\varepsilon(B_{s2}^* \to B^+ K^-)}{\varepsilon(B_{s2}^* \to B^0 K_s^0)} = 15.77 \pm 0.18, \quad \frac{\varepsilon(B_{s1} \to B^{*+} K^-)}{\varepsilon(B_{s1} \to B^{*0} K_s^0)} = 16.33 \pm 0.20, \\ & \frac{\varepsilon(B_{s2}^* \to B^+ K^-)}{\varepsilon(B_{s2}^* \to B^{*+} K^-)} = 0.961 \pm 0.010, \quad \frac{\varepsilon(B_{s2}^* \to B^0 K_s^0)}{\varepsilon(B_{s2}^* \to B^{*0} K_s^0)} = 0.970 \pm 0.012, \\ & \frac{\varepsilon(B_{s2}^* \to B^+ K^-)}{\varepsilon(B_{s1} \to B^{*+} K^-)} = 0.953 \pm 0.010, \quad \frac{\varepsilon(B_{s2}^* \to B^0 K_s^0)}{\varepsilon(B_{s1} \to B^{*0} K_s^0)} = 0.987 \pm 0.012, \end{split}$$

Their uncertainties are used as systematic uncertainties