Measurement of Z+c-jet Inclusive Cross-Section

Anton Stepennov, Vladimir Gavrilov, Alexandre Nikitenko, Olga Kodolova

12 September 2018

Motivation

- Tune existing Monte-Carlo models
- Extract pdf of c-quark

Z+c-jet process sensitive to pdf of c-quark

Events selections

2016 data ~ 35.6 fb-1

muons

- HLT_IsoMu24/HLT_isoTkMu24
- 2 isolated muons, passing tight id
- pt_{mu1} > 26 GeV
- pt_{mu2} > 10 GeV
- |eta| < 2.4
- |M_{II} 90| < 15 GeV
- $pt_{\mu\mu} > 40 \text{ GeV}$
- $|eta_{\mu\mu}| < 2.4$

gen objects selections

- 2 generator level muons
- generator level c-jet
 - M_{µµ} 90| < 15 GeV
 - Pt_{μμ} > 40 GeV
- $Pt_{gen c-jet} > 40 \text{ GeV}$

jets

- ak4 PF CHS jets
- loose jet id
- loose puid
- pt > 40 GeV
- |eta| < 2.4
- C-tag

matching criteria

- $dr(\mu\mu_{lhe} \mu\mu_{reco}) < 0.3$
- $dr(c-jet_{reco} c-jet_{gen}) < 0.3$
- same Ystar and Yb bins at GEN and reco levels

Events selections

4

Difference between data and MC DY predictions can be taken into account by multiplying light, bottom and charm components of DY by corresponding k_{MC}-factors. k_{MC}-factors can be found through solving 3 equations, corresponding

to no jet tag, c-tag and b-tag. Number of events in DY is required to be equal to number of events in

> DATA - Top/VV: K_c - factor = 0.77 K_b - factor = 0.70 K_{light} - factor = 0.99

Unfolding procedure

Unfolding procedure

6

Unfolding procedure

data

MC(closure)

Systematic errors

Theoretical uncertainties

- •pdf
- •qcd

Experimental uncertainties

- •c-tagging SFs
- •jet energy resolution
- •jet energy scale
- •pileup
- luminosity

Uncertainties are taken into account by varying corresponding parameters and calculating new response matrix, acceptance, background and k-factors. New unfolded distribution, obtained using these new objects, represents shape uncertainty of the result.

QCD QCD C-tag uncertainty

9

Results

unfolded Z and c-jet pt distributions with total uncertainties

c-jet pt Zpt dσ / dPt (pb) 5 2 dσ / dPt (pb) 5.2 systematic errors systematic errors unfolded data unfolded data MC, gen level MC, gen level MC, gen level, scaled by k-factor MC, gen level, scaled by k-factor 1.5 1.5 0.5 0.5 0 0 10² 10² Pt₇ Pt_{c-jet}

Square of total uncertainty in each bin equals sum of squares of uncertainties, corresponding to different sources

Results (different Ystar and Yb bins)

summary

- $d\sigma / dpt_z$ and $d\sigma / dpt_{c-jet}$ measured
- dependence on Y* and Yb studied
- analysis finished AN-2018/180
- to be done: check if c-quark pdf can be extracted with higher precision

Results (different Ystar and Yb bins), Z pt

 $\vee \star$

Events selections

process	N of events data - Top/ VV bkg	N of events MC Z+light	N of events MC Z+c	N of events MC Z+b
Z+j	2.36915E+06	2.0863E+06	258051	154667
Z+cj	89992.5	25327.1	55941.8	31152.3
Z+bj	65181.8	2040.24	7710.92	82197.1
k _{MC} -factors*		0.99	0.77	0.70

* data - Top/VV bkg = $k_{MC \ light}$ * DY_{light} + $k_{MC \ c}$ * DY_{C} + $k_{MC \ b}$ * DY_{b}

Data samples

/SingleMuon/Run2016B-23Sep2016-v3/AOD /SingleMuon/Run2016C-23Sep2016-v1/AOD /SingleMuon/Run2016D-23Sep2016-v1/AOD /SingleMuon/Run2016E-23Sep2016-v1/AOD /SingleMuon/Run2016G-23Sep2016-v1/AOD /SingleMuon/Run2016G-23Sep2016-v1/AOD /SingleMuon/Run2016H-PromptReco-v2/AOD /SingleMuon/Run2016H-PromptReco-v3/AOD

35.6 fb-1

/DYToLL_0/1/2J_13TeV-amcatnloFXFX-pythia8/ **4754/888.9/348.8 pb**/ TTJets_TuneCUETP8M2T4_13TeV-amcatnloFXFX-pythia8/ **831.76 pb** /ST_t-channel_top_4f_inclusiveDecays_13TeV-powhegV2-madspin-herwigpp/ **136*0.35** /ST_t-channel_antitop_4f_inclusiveDecays_13TeV-powhegV2-madspin-herwigpp/ **81*0.35** /ST_tW_antitop_5f_inclusiveDecays_13TeV-powheg-pythia8_TuneCUETP8M1 **35.6 pb** /ST_tW_top_5f_inclusiveDecays_13TeV-powheg-pythia8_TuneCUETP8M1/ **35.6 pb** /ST_s-channel_4f_leptonDecays_13TeV-amcatnlo-pythia8_TuneCUETP8M1 **96.74 pb**

> /WWTo2L2Nu_13TeV-powheg/ **118.7 pb** /WZ_TuneCUETP8M1_13TeV-pythia8/ **47.13 pb** /ZZ_TuneCUETP8M1_13TeV-pythia8/ **16.5 pb**

Data:

MC: