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THE LAGRANGIAN

possible  right handed neutrino ?
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Extraordinary agreement between measurements and SM predictions

C. Gwenlan 

ICHEP2018



S. Rathatlou 

ICHEP2018

New physics through precision
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Run-2 analyses with 80 fb-1 for the first time – higher precision is coming! 

Higgs bosons – entering precision era 

ttH observation 

D. Charlton 

LHCp2018
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Precision EW mass measurements 

Precision spectroscopy! 

10.60 ± 0.64(stat) ± 0.17 (syst) MeV 

m(χ
b2

(3P)) – m(χ
b2

(3P)) =

D. Charlton 

LHCp2018
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Figure 1: Left: SM RG evolution of the gauge couplings g1 =
p

5/3g0, g2 = g, g3 = gs, of the
top and bottom Yukawa couplings (yt, yb), and of the Higgs quartic coupling �. All couplings are
defined in the MS scheme. The thickness indicates the ±1� uncertainty. Right: RG evolution of
� varying Mt and ↵s by ±3�.

We stress that both these two-loop terms are needed to match the sizable two-loop scale

dependence of � around the weak scale, caused by the �32y4
t
g2
s
+ 30y6

t
terms in its beta

function. As a result of this improved determination of ��(µ), we are able to obtain a

significant reduction of the theoretical error on Mh compared to previous works.

Putting all the NNLO ingredients together, we estimate an overall theory error on Mh of

±1.0GeV (see section 3). Our final results for the condition of absolute stability up to the

Planck scale is

Mh [GeV] > 129.4 + 1.4

✓
Mt [GeV]� 173.1

0.7

◆
� 0.5

✓
↵s(MZ)� 0.1184

0.0007

◆
± 1.0th . (2)

Combining in quadrature the theoretical uncertainty with the experimental errors on Mt and

↵s we get

Mh > 129.4± 1.8 GeV. (3)

From this result we conclude that vacuum stability of the SM up to the Planck scale is

excluded at 2� (98% C.L. one sided) for Mh < 126GeV.

Although the central values of Higgs and top masses do not favor a scenario with a

vanishing Higgs self coupling at the Planck scale (MPl) — a possibility originally proposed
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Figure 5: Regions of absolute stability, meta-stability and instability of the SM vacuum in the Mt–
Mh plane. Right: Zoom in the region of the preferred experimental range of Mh and Mt (the
gray areas denote the allowed region at 1, 2, and 3�). The three boundaries lines correspond to
↵s(MZ) = 0.1184± 0.0007, and the grading of the colors indicates the size of the theoretical error.
The dotted contour-lines show the instability scale ⇤ in GeV assuming ↵s(MZ) = 0.1184.

3.3 Phase diagram of the SM

The final result for the condition of absolute stability is presented in eq. (2). The central

value of the stability bound at NNLO on Mh is shifted with respect to NLO computations

(where the matching scale is fixed at µ = Mt) by about +0.5GeV, whose main contributions

can be decomposed as follows:

+ 0.6GeV due to the QCD threshold corrections to � (in agreement with [14]);

+ 0.2GeV due to the Yukawa threshold corrections to �;

� 0.2GeV from RG equation at 3 loops (from [12,13]);

� 0.1GeV from the e↵ective potential at 2 loops.

As a result of these corrections, the instability scale is lowered by a factor ⇠ 2, for Mh ⇠ 125

GeV, after including NNLO e↵ects. The value of the instability scale is shown in fig. 4.

The phase diagram of the SM Higgs potential is shown in fig. 5 in the Mt–Mh plane,

taking into account the values for Mh favored by ATLAS and CMS data [1, 2]. The left

plot illustrates the remarkable coincidence for which the SM appears to live right at the

border between the stability and instability regions. As can be inferred from the right plot,

which zooms into the relevant region, there is significant preference for meta-stability of the

SM potential. By taking into account all uncertainties, we find that the stability region is

disfavored by present data by 2�. For Mh < 126 GeV, stability up to the Planck mass is

excluded at 98% C.L. (one sided).

17

The electroweak vacuum is unstable under radiative corrections

The whole construction of the SM may be in trouble being metastable or even unstable

the situation crucially depends on the top and Higgs mass values and 
requires severe fine-tuning and high accuracy of calculations (3 loops)
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THE STANDARD MODEL: THE STATUS REPORT AND OPEN QUESTIONS

Neutrino Physics 
 Absolute value of neutrino masses ?
 Mass hierarchy? 
 Dirac or Majorana?
 Fourth sterile neutrino?
 Neutrino dark matter? 

0.06 eV <
X

m⌫ < 0.12 eV

 -osc  CMB⌫

de Salas et al, 1708.01186

Normal hierarchy favoured at 3.1 𝜎
Nonzero CP phase favoured
Upper octant favoured 

PMNS-matrix parameters are measured 
with high accuracy of few %



BEYOND THE STANDARD MODEL: NEUTRINO

Three Types of Seesaw Mechanisms 
Require the existence of new degrees of freedom (particles) beyond those 
present in the SM 
Type I seesaw mechanism: νlR - RH νs’ (heavy).  
Type II seesaw mechanism: H(x) - a triplet of  H0,H−,H−− Higgs fields. 
Type III seesaw mechanism: T(x) - a triplet of fermion fields. 

Is it just the SM or requires New physics?

M. Weber ICHEP2018



BEYOND THE STANDARD MODEL: DARK MATTER

H. Baer et al., Phy. Rep. 555, 1(2015) 

Major problem: 85% of matter is dark and remains invisible!

Is this compatible with the SM? 
Does it requires modification of the SM or addition of gravity?

Many candidates in many orders of magnitude of mass:



BEYOND THE STANDARD MODEL: DARK MATTER SEARCHES

Direct W
IMP

Colliders WIMP

Axion-likes

Y. Semertzidis 



BEYOND THE STANDARD MODEL: THE MASS SPECTRUM AND MIXINGS

CKM vs. PMNS 

ICHEP, Melbourne, July 9, 2012 � 4 

Why these values? Are the two related? Are they related to masses? 

Area ~V2 
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• Mass spectrum? • Mixing Matrices?

mquark = yquark · v
mlepton = ylepton · v

mW = g/
p
2 · v

mZ =
p

g2 + g02/
p
2 · v

mH =
p
� · v

m� = 0

mgluon = 0

• Quark-Lepton Symmetry
• Strong difference in parameters

• What are the CKM and PMNS phases? 
• Where lies the source of CP violation: in 
quark or lepton sector?

SM

JCP =
1

8
sin 2✓12 sin 2✓23 sin 2✓13 cos ✓13 sin �
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BEYOND THE STANDARD MODEL: QUEST FOR SYMMETRY

Follows the attempts in quark sector with 30 years delay: so far unsuccessful

Symmetry might be tricky E8 roots



THE STANDARD MODEL: CONCEPTUAL  PROBLEMS

• Baryon asymmetry of the Universe

(requires larger CP than in the SM) 

N(B)�N(B̄)

N�
⇠ (6.19± 0.14)⇥ 10�10

• still not explained   
• three conditions (A.D.Sakharov) 

1. Violation of a thermal equilibrium in 
early Universe

Т
A possible scenario in the early Universe when particles drop from thermal equilibrium 
violations T invariance

2. Violation of baryon number B =
Nq �Nq̄

3B
Baryon number is conserved in the SM with exponential accuracy

Violation of baryon number occurs in Grand Unified Theories 
and in Lepton=fourth color models (Pati-Salam model )

New particles = Leptoquarks, 
Extended Highs sector}

3. Violation of CP invariance CP

In the SM achieved via phase factors in 
the CKM and PMNS mixing matrices

CPT is exact symmetry of Nature

The presence of new phase factors in 
extended models (2HDM, SUSY, etc)
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BEYOND THE STANDARD MODEL: CONCLUSIONS

WHAT MAKES US THINK THAT THERE IS PHYSICS BEYOND THE STANDARD MODEL?

• Small discrepancy with experimental data

• Possible new ingredients in neutrino sector (majorana neutrino)

• Instability of electroweak vacuum

• Inability to describe the Dark matter (unless it has pure 
gravitational nature)

• Baryon asymmetry of the Universe is a fundamental problem  
(Baryon and Lepton genesis might require new ingredients)

• Lack of understanding of flavor structure of the SM calls for 
explanation at higher level

• New era in gravity due to discovery of gravitational waves and black 
holes might change the landscape
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