Energy scale calibration of the CMS Hadron Calorimeter with isolated charged hadrons: status and plans

Marina Chadeeva (for the Isotrack calibration group)

- CMS HCAL calibration workflow
- Calibration technique with isolated charged hadrons
- Results of hadron energy scale calibration in 2016
- Preliminary calibration results for 2018 data

Calibration workflow

CMS HCAL calibration workflow

Radiation damage monitoring

HB: monitoring with laser; HE and HF: relative corrections from laser and collision data

In situ calibration with collision data

НВ	HE	HF	но
Intercalibration with ϕ -symmetry	Intercalibration with ϕ -symmetry Since 2018: interdepth calibration with muons	Intercalibration with ϕ -symmetry	Intercalibration with muons
Energy scale calibration with isolated charged hadrons	Energy scale calibration with isolated charged hadrons	Energy scale calibration with $Z ightarrow ee$	Energy scale calibration under development (dijets, MET)

In this talk: focus on calibration with isolated charged hadrons

Marina Chadeeva (MEPhI, LPI)

1 CMS HCAL calibration workflow

2 Calibration technique with isolated charged hadrons

Results of hadron energy scale calibration in 2016

Preliminary calibration results for 2018 data

Calibration with isolated charged hadrons

Goal

Equalisation of response in $i\eta$ rings to establish absolute energy scale in HB and HE

Technique

- Inherited from L3 experiment
- \bullet Momentum of the isolated hadron, p_{track} , is measured in the tracker.
 - high track reconstruction quality
 - momentum range 40 $< p_{\rm track} <$ 60 GeV
- Energy in the HCAL, $E_{\rm hcal},$ is measured from all cells within a cone of 35 cm around the track impact point at the HCAL front face.
- Response is defined as $E_{\rm hcal}/(p_{\rm track} E_{\rm ecal})$ $E_{\rm ecal}$ is energy in a cone of radius 14 cm around the track impact point in the ECAL.
- Selection conditions:
 - MIP in ECAL: $E_{ecal} < 1$ GeV;
 - no MIP in HCAL: $E_{\rm hcal} > 10$ GeV;
 - max momentum of neighbour track within a cone of radius 64 cm does not exceed 2 GeV (tight charge isolation) 10 GeV (loose charge isolation) *!! requires correction for pileup !!*
- $\bullet\,$ Response is equalised in iterations (details in DN-2016/029 and backup slides).
- MPV and width of response are obtained from two-step Gaussian fit.

Result

One response correction factor per each $i\eta$ ring and (optionally) per depth segment

Motivation for loose isolation in isotrack calibration

- \bullet Statistical uncertainty of response corrections is expected to be ${\sim}1{\text{--}}2\%.$
- $\bullet\,$ Selection efficiency in HE decreases with increasing pileup \Rightarrow loose isolation is needed.
- Loose isolation requires correction for pileup on an event-by-event basis.

No significant difference between loose and tight charge isolation in HB. The efficiency for loose isolation is similar to that w/o pileup. Number of tracks with tight isolation drops dramatically already in HB. For loose isolation, the sharp decrease starts from $|i\eta| = 20$.

N.B.: Initial number of events in two MC samples is different by factor of 5.

Correction for pileup for isotrack calibration

Technique of correction for pileup based on the local energy deposition

- Standard selection conditions are applied.
- Uncorrected energy, *E*, is the sum of hits in the basic cone of $R_{\rm cone} = 35$ cm; *p* is the track momentum measured in tracker.
- Excess energy, Δ , is the energy in the "extra" cone between $R_{\rm cone}$ + 10 cm and $R_{\rm cone}$ + 30 cm (see details of Δ behaviour on backup slides).
- Corrected energy is calculated on the event-by-event basis:

$$E_{\rm cor} = \begin{cases} E, & \text{if } \frac{\Delta}{\rho} < d_{\rm thr} \\ E \cdot (1 + a_1 \cdot \frac{E}{\rho} \cdot \frac{\Delta}{\rho} (1 + a_2 \cdot \frac{\Delta}{\rho})), & \text{if } \frac{\Delta}{\rho} \ge d_{\rm thr} \end{cases}$$

Tuning of pileup correction coefficients a1 and a2

- MC 50 GeV pion samples with and w/o pileup;
- fit to reference MC sample w/o pileup, $d_{\rm thr}$ threshold for correction (see backup for details);
- in 2016–2017, tuned with MC 2016 ($\langle N_{vtx} \rangle \sim$ 20); Ratio: corrected MPV with pileup / MPV w/o pileup \Rightarrow
- in 2018, retuned with MC 2018 ($\langle N_{vtx} \rangle \sim$ 40).

① CMS HCAL calibration workflow

2 Calibration technique with isolated charged hadrons

8 Results of hadron energy scale calibration in 2016

Preliminary calibration results for 2018 data

Calibration in 2016

Impact of pileup on response to hadrons from collision data

CMS

Crosscheck of correction for pileup with collision data

- correction for pileup is tuned on MC 2016 pion samples;
- data sample was split based on the number of reconstructed vertices, N_{vtx} , into low-pileup ($N_{vtx} < 10$) and high-pileup ($N_{vtx} > 25$) subsamples.

Large discrepancy is observed between low- and high-pileup response at $|i\eta| > 23$. Decision: apply isotrack calibration at $|i\eta| \le 23$ and extrapolate correction factors to $|i\eta| > 23$. Residual uncertainty of MPV is ~3% in HB ($|\eta| \le 1.2$) and ~2% in HE ($1.2 < |\eta| \le 2.0$). Calibration in 2016

HCAL response in 2016 collision data

Conditions

Loose isolation, event-by-event correction for pileup, one correction factor per $i\eta$ ring

Uncertainty of the energy scale from 8 fb⁻¹ is 3.4% in HB ($|\eta| \le 1.2$) and 2.6% in HE ($1.2 < |\eta| \le 2.0$) for loose isolation (incl. statistical uncertainty of 0.5%).

Systematic uncertainties dominate, see backup for details on contributions.

Marina Chadeeva (MEPhI, LPI)

Calibration in 2016

Response distribution in HE for 2016 collision data

Conditions

Loose isolation, event-by-event correction for pileup, one correction factor per $i\eta$ ring

Marina Chadeeva (MEPhI, LPI)

RDMS-CMS 2018, Tashkent, Uzbekistan

1 CMS HCAL calibration workflow

2 Calibration technique with isolated charged hadrons

3 Results of hadron energy scale calibration in 2016

Preliminary calibration in 2018

MC: correction for pileup for isotrack calibration in 2018

- correction for pileup retuned using MC 2018 pion samples with $\langle N_{vtx} \rangle \sim$ 40; N.B.: MC samples before energy scale calibration are used.
- MC2016-based correction and MC2018-based correction are applied to the same 2018 MC pion samples. The sample w/o pileup is used as a reference.

Much better agreement for MC2018-based correction at $|i\eta| > 23$. Residual uncertainty w.r.t. response w/o pileup is ~0.8% up to $|i\eta| = 26$.

Marina Chadeeva (MEPhI, LPI)

RDMS-CMS 2018, Tashkent, Uzbekistan

Crosscheck of pileup corrections on 2018 data !! Work in progress !!

CMS

Agreement between low and high pileup within uncertainties except for $|i\eta| = 25$ and $\langle N_{vtx} \rangle > 40$ Good agreement in the all range for $\langle N_{vtx} \rangle < 40$ with residual uncertainty of $\sim 1.5\%$

Marina Chadeeva (MEPhI, LPI)

RDMS-CMS 2018, Tashkent, Uzbekistan

September 13, 2018 13 / 15

Crosscheck of correction factors for 2018 data !! Work in progress !!

Correction factors (CF) from EGamma AlcaReco dataset (eras A, B and C)

obtained in the range –25 $\leq i\eta \leq$ 25 for merged depths

Good agreement within uncertainties (~2%) up to $|i\eta| = 25$ Additional constraint $\langle N_{vtx} \rangle < 40$ can be used to reliably extract CFs up to $|i\eta| = 25$ CFs extracted from 2018AB datasets implemented in the reconstruction since 2018D

Marina Chadeeva (MEPhI, LPI)

RDMS-CMS 2018, Tashkent, Uzbekistan

Summary

Summary

HCAL energy scale calibration with isolated charged hadrons

- Isotrack technique allows HCAL energy scale calibration within tracker coverage.
- Selection efficiency drops dramatically in HE with increasing pileup.
- Loose isolation constraint is used with event-by-event correction for pileup.
- Correction for pileup is tuned using MC pion samples and is pileup dependent.

Results of HCAL energy scale calibration

- In 2016 and 2017, the HCAL energy scale was calibrated and equalised using isotrack technique with an accuracy of ${\sim}3.5\%$ in HB and ${\sim}2.5\%$ in HE at $|i\eta|\leq23.$
- In 2018, isotrack calibration is extended up to $|i\eta|=25$ with the same level of precision.

Plans:

- improvement of pileup correction for ultralegacy rereco of 2016 and 2017 data;
- studies of isotrack calibration using lower energy range (e.g. 25-35 GeV);
- monitoring of relative response of phi-segments in HE;
- development of MVA-based pileup correction techniques for isotrack.

Backup slides

CMS Hadron Calorimeter layout up to 2017

Subdetectors: barrel (HB), endcap (HE), outer (HO) and forward (HF) hadron calorimeters

Layer 1 and Layer 7 are instrumented with the laser system. $i\eta$ is a number of η ring

Subdetectors: barrel (HB), endcap (HE), outer (HO) and forward (HF) hadron calorimeters

 $i\eta$ is a number of η ring

Calculation of correction factor $C_i^{(m+1)}$ at (m+1) iteration

$$C_{i}^{(m+1)} = C_{i}^{(m)} \left(1 - \frac{\sum_{j} w_{ij}^{(m)} \cdot (E_{j}^{(m)}/p_{j} - RR)}{\sum_{j} w_{ij}^{(m)}} \right), \quad w_{ij}^{(m)} = \frac{e_{ij}^{(m)}}{E_{j}^{(m)}}, \quad E_{j}^{(m)} = \sum_{i} e_{ij}^{(m)}$$

 p_j - track momentum in *j*-th event, $e_{ij}^{(m)}$ - energy in *i*-th subdetector, $e_{ij}^{(m)} = e_{ij}^{(0)}C_i^{(m)}$, $C_i^{(0)} = 1$ $1 \le i \le M$ (M_j - number of subdetectors in cluster), $1 \le j \le N_i$ (N_i - number of events), RR - is the target reference response, RR = 1 by default.

Uncertainty of correction factors

- Statistical uncertainty: $\Delta C_i = \Delta R_i \frac{\sqrt{\sum_j (w_{ij})^2}}{\sum_j w_{ij}}$, where ΔR_i is the r.m.s. of response of the subsample used for the i-th subdetector (r.m.s.~0.3 for the whole sample)
- Systematic uncertainty: difference between iterations

Target reference response for asymmetric distributions

The iterative procedure shifts the **mean** of the distribution to the target value **RR**. Applying RR = 1 when mean \neq mpv will result in mpv $\neq 1$ after iterations. To get mpv = 1 one should use RR = mean/mpv of the initial sample. $\frac{\Delta}{n}$ is the fraction of deposited energy in the region surrounding the main cluster.

MC 2018: distribution of $\frac{\Delta}{p}$

Distributions are η -dependent, plot shows merged distributions for all $|i\eta| \leq 26$.

About 75% of events w/o pileup in HB have $\frac{\Delta}{p} < 0.03$.

Threshold $d_{\rm thr}$ to apply correction for pileup must help to balance between shower fluctuations and pileup contribution. The threshold is set near intersection: $d_{\rm thr} = 0.03$.

- $i\eta +$ and $i\eta -$ are merged in training samples;
- \bullet training subsamples with equal number of events per $i\eta$ (~2200) were used;
- $\bullet\,$ functor calculates the mean of corrected energy distribution at each $|i\eta|.$

For the sample w/o pileup, mean and MPV are consistent up to $|i\eta| < 25$. Left tail on distributions appears at $|i\eta| = 26$.

Fit was performed separately in 3 $|i\eta|$ ranges: [1,22]; [23,24]; [25,26]. For the last range, target mean was biased by 1.05.

Standard isotrack selections, loose isolation and event-by-event correction for pileup

Uncertainties of MPV

	Data (8/fb) 13 TeV for iη ≤ 23		MC double π (5 mln) for iη ≤ 26	
	HB	HE	НВ	HE
Statistical uncertainties	0.5%	0.5%	0.2%	0.2%
Systematic uncertainties, including:	3.3%	2.5%	0.4%	1.2%
residuals after iterations	1.0%	1.3%	0.3%	1%
trigger bias	~1%	~1%	-	-
pileup contribution	3.0%	1.9%	0.3%	0.6%
Total	3.4%	2.6%	0.5%	1.2%

Crosscheck of ϕ -symmetry with isotrack: HEP17 tests

2017 data: response in HE before calibration

2017B up to 297467, 17≤|in|≤23 (bin=0.1000, fit: ±1.8 RMS)

- merged $i\eta$ rings (17 $\leq i\eta \leq$ 23);
- merged 4 neighbour $i\phi$ sectors (18 sectors in HE), so that 63-66 are together;
- standard isotrack selections applied (loose charge isolation + correction for pileup).

Before in situ calibration

With raddam corrections and HEP17 scaling

2017BCv1 from 297494 (+raddam cor), 17≤|η|≤23 (bin=0.0750, fit: ±1.8 RMS)

Changes of response at $i\phi$ =63-66 after corrections ~30%