

Scintillator macrotiles – possible mechanical concept for HGCAL

Yu. Ershov I.Golutvin

Yu.Ershov I.Golutvin Tashkent 15-09-2018

Mixed CE-H (Calorimetr Endcap–Hadron) cassettes for HGCAL

20th Annual RDMS CMS Collaboration Conference Tashkent Uzbekistan 12-15 September 2018

Cooling plates are the main structural element of CE-H cassette :

 provide operation temperature – 30°C...-35°C for silicon and scintillator detectors inside HGCAL;

 used as a base for installation off all detector parts of the cassette;

 provide the positioning of the assembled cassette in the absorber slot;

- consist of 2 or 3 separate parts;

>made of 6 mm copper sheets and joined together.

Cooling plate design is not finalized and fixed yet.

60° Cooling plate assembled Overall dimension

Scintillator macrotile and SiPMs tileboard.

Scintillator macrotiles production.

Scintillator macrotiles construction is well-adapted to production by machining.

The process begins by milling scintillation material EJ-260.

After "Step #5" scintillator macrotile is ready for installation in the detector. Additional procedure "tiles wrapping" is not required.

Yu.Ershov I.Golutvin Tashkent 15-09-2018

20th Annual RDMS CMS Collaboration Conference Tashkent Uzbekistan 12-15 September 2018

Scintillator macrotile prototypes.

3 full-size prototypes of scintillator macrotiles with orthogonal tiles of 30 mm x 30 mm were manufactured at ISMA Kharkov in June 2018 (by A.Boyarintsev).

The prototype size: 380mm x 290mm.

Number of tiles in macrotile: $8 \times 12 = 96$ pieces

Final scintillator thickness = 3 mm

Mixed CE-H cassettes. Features of the operation and thermal effects:

- Assembly the detectors at room temperature (+20°...+25°C);
- Operation the detectors at -30°...-35°C;
- Parts of the detectors are made of materials with different coefficients of thermal expansion (CTE)

Scintillator Macrotile, SiPMs Tileboard and Cooling plate.

270 mm this is the maximum distance from the center of the macrotile to its edge.

Yu. Frshov L.Golutvin Tashkent 15-09-2018

Parts Material	СТЕ x10 ⁻⁶ °С
Cu - Cooling plate	16.5
Stainless steel - Absorber	17.3
EJ-260 – Scintillator macrotile	78
G10 – SiPMs tileboard	10

Scintillator macrotile, SiPMs tileboard. Fixation points.

To minimize thermal effects for parts made from different materials (macrotile, tileboard and cooling plate) the following alignment and fastening scheme is proposed:

- Base point 1 precise pin and precise hole in the center of macrotile (to minimize distances);
- Base point 2 precise pin and precise slotted hole on the central axis at the periphery of macrotile;
- Fix points holes with thermoexpansion gap wide holes and regular skrews.

Scintillator part cassettes assembly

Scintillator macrotile and SiPMs tileboard.

Changing dimensions after cooling by 60 degrees (from +25°C to -35°C).

The concentric circles show (in increments of 0.1 mm) changing the dimensions after cooling down by 60°

- The selection of the base point in the center will be optimal for joint the macrotile and the tileboard
- The maximum discrepancy will be up to 1.1mm.

For minimize of thermal effects for "SiPMs – dimples" position

following design solutions are proposed :

• Pre-shift SiPMs position on SiPMs tileboard at room temperature to correct dimensions changes after cooling down.

• Dimple dimension should provide the assembly of scintillator macrotile and SiPMs tileboard with pre-shifted SiPMs at room temperature.

• Additional temperature gap T≥1.2mm for SiPMs required.

•After cooling down the detector to (– 30°C...-35°C) shifted SiPMs will take the correct position in dimples.

Pre-shift of SiPMs from the nominal position to obtain their correct position in the dimples after cooling down by 60°

Conclusions

Scintillator macrotiles – possible mechanical concept for HGCAL:

- Scintillator macrotiles are easy to manufacture and do not require special equipment;
- Scintillator macrotiles do not require extra tiles wrapping operation;
- proposed design provides the detector assembly at room temperature and operation after cooling down to (– 30°C...-35°C);
- detector assembly procedure is very simple and fast.

Backup

Yu.Ershov I.Golutvin Tashkent 15-09-2018

Scintillator macrotile and SiPMs tileboard. Assembly with cooling plate.

CE-H Layers 36 - 39. Fine Scintillator macrotiles and tileboards. Types. Overall dimensions.

Holes for scintillator macrotiles and SiPMs tileboard on Cooling plate.

Holes for macrotiles positioning and fixing The holes for mounting and fixing the detector elements must be made with an accuracy of 0.1 mm.

Chapter 17 Material Expansion Coefficients Linear Thermal Expansion Coefficients of Metals and Alloys

	Coefficient of E	Coefficient of Expansion					
Alloys	ppm/°C	ppm/°l					
ALUMINUM AND ALUMINUM ALLOYS (Continued)							
Casting Alloys							
A13	20.4	11.4					
43 and 108	22.0	12.3					
A108	21.5	12.0 10.6					
A132	19.0						
D132	20.5	11.4					
F132	20.7	11.5					
138	21.4	11.9					
142	22.5	12.5					
195	23.0	12.8					
B195	22.0	12.3					
214	24.0	13.4					
220	25.0	13.9					
319	21.5	12.0 12.3					
355	22.0						
356	21.5	12.0					
360	21.0	11.7					
750	23.1	12.9					
40E	24.7	13.8					
COPPER AND COPPER ALLOYS							
Wrought Coppers							
Pure Copper	16.5	9.2					
Electrolytic Tough Pitch Copper (ETP)	16.8	9.4					
Deoxidized Copper, High Residual Phosphorous (DHP)	17.7	9.9					
Oxygen-Free Copper	-lesiduai Priosphorous (DHP) 17.7 17.7						
	17.7	9.9					

Table 17-1. Linear thermal expansison coefficients of metals and alloys (Cont.)

User's Manual

17-3

Chapter 17 Material Expansion Coefficients Linear Thermal Expansion Coefficients of Metals and Alloys

Table 17-1. Linear thermal expansison coefficients of metals and alloys (Cont.)

	Coefficient of Expansion				
Alloys	ppm/°C	ppm/°F			
NICKEL AND NICKEL ALLOYS					
Nickel (99.95% Ni-+Co)	13.3	7.4			
Duranickel	13.0	7.2			
Monel	14.0	7.8			
Monel (cast)	12.9	7.2			
Inconel	11.5	6.4			
Ni-o-nel	12.9	7.2			
Hastelloy B	10.0	5.6			
Hastelloy C	11.3	6.3			
Hastelloy D	11.0	6.1			
Hastelloy F	14.2	7.9			
Hastelloy N	10.4	5.8			
Hastelloy W	11.3	6.3			
Hastelloy X	13.8	7.7			
Illium G	12.19	6.8			
Illium R	12.0	26.7			
80 Ni-20 Cr	17.3	9.6			
60 Ni-24 Fe-16Cr	17.0	9.5			
35 Ni-45 Fe-20 Cr	15.8	8.8			
Constantan	18.8	10.5			
STAINLESS STEELS					
301	16.9	9.4			
302	17.3	9.6			
302B	16.2	9.0			
303	17.3	9.6			
304	17.3	9.6			
305	17.3	9.6			
308	17.3	9.6			

GREEN EMITTING PLASTIC SCINTILLATOR EJ-260, EJ-262

These plastic scintillators have been formulated for use where longer wavelengths are needed for efficient optical coupling to solid-state photosensors. Because of their longer emission wavelengths, they will exhibit somewhat greater radiation hardness than conventional blue plastic scintillators. Both scintillators can be used to detect the same kinds of radiation commonly measured with blue scintillators.

EJ-260 is a green emitting plastic scintillator that has been formulated for use where longer wavelengths are advantageous for purposes of light piping. The green fluorescence is of short enough wavelength and

PROPERTIES EJ-260 EJ-262 Light Output (% Anthracene) 60 57 Scintillation Efficiency (photons/1 MeV e 9,200 8,700 Wavelength of Maximum Emission (nm) 490 481 Light Attenuation Length (cm) 350 250 Decay Time (ns) 9.2 2.1 H Atoms per cm³ (×10²²) 5.21 5.20 C Atoms per cm³ (×10²²) 4.70 4.69 Electrons per cm³ (×10²³) 3.35 3.33 Density (g/cm³) 1.023 1.023

Polymer Base Polyvinyltoluene **Refractive Index** 1.58 75°C Softening Point Vapor Pressure Vacuum-compatible Coefficient of 7.8 × 10⁻⁵ below 67°C Linear Expansion Temperature Range -20°C to 60°C Light Output (L.O.) At 60°C, L.O. = 95% of that at 20°C

No change from -60°C to 20°C

CHEMICAL COMPATIBILITY Attacked By: Aromatic solvents, Chlorinated solvents, Ketones, Solvent bonding cements, etc. Stable In: Water, Dilute acids and alkalis, Lower alcohols, Silicone greases.

It is safe to use most epoxies with these scintillators.

Revision Date: 2/2/2016

vs. Temperature

ELJEN TECHNOLOGY 1300 W. Broadway, Sweetwater, TX 79556 www.eljentechnology.com • eljen@eljentechnology.com Toll Free (USA): (888)-800-8771 • Tel: (325)-235-4276 • Fax: (325) 235-0701

ē 0.6

HWW 0.4

0.2

0.0

450

the scintillation efficiency is high enough for successful use with conventional blue sensitive photomultiplier tubes. The light output data presented in the table were determined with a flat response photodetector and would be approximately one half that level for a typical bialkali photomultiplier tube.

EJ-262 is also a green emitting scintillator, but has a faster decay time and a shorter maximum emission wavelength than those of EJ-260. The shorter emission wavelength makes EJ-262 suitable for use with blue sensitive photomultiplier tubes.

EJ-260 EMISSION SPECTRUM

WAVELENGTH (nm)

E

Product Description

Acculam® Epoxyglas G10/ FR4, is a laminate sheet comprised of a flame retardant epoxy resin and a woven fiberglass substrate. This grade qualifies to NEMA FR4 and MIL-I-24768/27. Typical Applications

This material has high mechanical strength and excellent electrical insulating qualities in both dry and humid conditions. These attributes along with good fabricating characteristics allow this grade to be used in a wide variety of electrical and mechanical applications.

Typical Properties Physical Data	Typical Value	Units
Specific Gravity/Density	1.85	a/cm ³
Water Absorption _ 125"	1.05	g/cm
Tama and the lades	<.10	70 90 \ 95
Temperature Index	140 \ 284	-C \ -F
Rockwell Hardness	110	M scale
Bond Strength	> 2,200 \ 1,000	lbs \ kgs
Flexural Strength-LW-A125"	> 65,000 \ 448	PSI \ MPa
Flexural Strength-CW-A125"	> 50,000 \ 345	PSI \ MPa
Izod Impact Strength-LW	> 10	ft-lbs/in
Izod Impact Strength-CW	> 8	ft-lbs/in
Compressive Strength-Flatwise	> 60,000 \ 415	PSI \ MPa
Electrical Data		
Dielectric Breakdown-A	> 50	kV
Dielectric Breakdown-D48/50	> 50	kV
Permittivity-A	4.8	
Permativity-D24/23	4.8	
Dissipation Factor-A	0.017	
Dissipation Factor-D24/23	0.018	

Accurate Plastics, Inc. ~ Sheet Comparative Data Chart

 $\mathbf{\Lambda}$

			THERMOSET INDUSTRIAL LAMINATE PROPERTIES Engineering Values (MIN unless noted)												
	Nema	G 10, FR4	G 10	G11, FR5	G11	G3	G 5, G9	G 7	GPO 1	GPO 3	х	ХХ	ххх	C, CE	L, LE
Properties	G rades reinforcemen	_s glass cloth	lass cloth	glass cloth	glass cloth	glass cloth	glass cloth	glass cloti	nglass ma	t glass mat	paper	paper	paper	canvas	linen
	regin hinden	epoxy	eporcy	epoxy HT	epoxy HT	phenolic	melamine	silicone	polyester	polyester	phenolic	phenolic	phenolic	phenolic	phenoli
Tensile Strength	TOTI DINGER		100000												
lengthwise, P SI crosswise, P SI		40,000 35,000	40,000 35,000	40,000 35,000	40,000 35,000	23,000 20,000	37,000 30,000	23,000 18,000	8,000	8,000	20,000 16,000	16,000 13,000	15,000 12,000	9,000 7,000	12,500 8,750
Compressive Strength															
flatvise, PSI edgevise, PSI		60,000 35.000	68,000	60,000 35.000	60,000	50,000	70,000 25.000	45,000	30,000	30,000	36,000	34,000 23.000	32,000	39,000	37,000
Flexural Strength125"		20.040.0000													
lengthwise, P SI crosswise, P SI		55,000 45,000	55,000 45,000	55,000 45,000	55,000 45,000	20,000 18,000	55,000 35,000	20,000 18,000	18,000	18,000	25,000 22,000	15,000 14,000	13,500 11,800	17,000 16,000	16,500 14,000
Modulus of Elasticity -															
Flexural lengthwise, kP SI crosswise, kP SI		2,700 2,200	2,700	2,800	2,800 2,300	1,500	2,500	1,400	1,200	1,200	1,800	1,400	1,300	1,000	1,000 850
IZOB Impact		00000					512922	1855	22/2		23-231				
lengthwise, ft-lb/in of not ch	8	7.0	7.0	7.0	7.0	6.5	7.0	6.5	8	8	0.55	0.40	0.40	2.1/1.6	1.35 /1.2
Rockwell Hardness M scale		110	111	114	112	100	120	100	100	100	110	105	110	104	105
Specific Gravity		1.85	1.80	1.85	1.80	1.65	1.90	1.68	1.80	1.85	1.36	1.34	1.32	1.36	1.34
Bond Strength, in Ibs.		2,000	2,000	1,600	1,600	850	1,700	650	850	850	700	800	950	1,800	1,600
Coefficient of Thermal Expansion cm/cm.*C X 10 ⁻⁶		1.0	0.9	1.0	0.9	1.8	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Water Absorption		2020	101000												
.062" thick, % per 24 hrs	§	0.25	0.25	0.25	0.25	2.70	0.80	0.55	1.00	0.60	6.00	2.00	1.40	4.4/2.2	2.5/1.9
.500" thick, % per 24 hrs		0.10	0.10	0.10	0.10	1.50	0.40	0.35	0.35	0.25	1.10	0.55	0.45	1.27.75	0.9/0.7
Dielectric Strength, volt/mil perpendicular to laminations, Step by Step 062"thick		450	450	450	450	500	350	350	370	400	500	500	450	300	300
Dissination Factor		350	350	350	350	450	210	250	a 1667 a		360	300	520	220	220
condition A, 1 megacycle- max		0.025	0.025	0.025	0.025	1999	0.017	0.003	0.03	0.03	Same	0.045	0.038		0.055
Dielectric Constant condition A, 1 megacycle- max		5.2	5.2	5.2	5.2	(Salar)	7.80/7.20	4.2	4.3	4.3	Same.	(and and)	(******)	(100)	(*****)
Insulation Resistance	-														
Megaohms at Condition C		200,000	200,000	200,000	200,000		10,000	100,000				60	1000		
AIC RESISTANCE - SEC. Temp Index 062" and		(444(45))		1000	(1000)		180	180	ាហ	150				(1997)	-
over Electrical - °C Mechanical - °C		130 140	130 140	170 180	170 180	1 40 1 70	140	170 220		120 140	130 130	140 140	140 140	115 125	115 125
MII-24768 MIL - Type		27 GEE-F	GEE	28 GEB-F	3 GE B	18 GPG	8 / 1 GMG/GME	17 GSG	4 GPO N-1	6 GPO N-2	12 P BM	11 PBG	10 PBE	16,14 FBM/FBG	15,13 FBI <i>I</i> FBE

November 1, 2016