Beam Diagnostics at AWAKE

Spencer Gessner AWAKE Instrumentation Meeting 27 September, 2018

- 1. Overview and highlights from AWAKE
- 2. Summary of AWAKE Beam Instrumentation
- 3. Issues during AWAKE Run1

AWAKE Overview

Spectrometer Camera Diagnostic

F. Keeble, J. Chappell, D. Cooke, M. Wing, UCL I. Gorgisyan, S. Mazzoni, D. Medina, Bl

Single Continuous Triggered Stop Acquisition	1	image Acquired -	1 🔞 📑 📷 🕹 Sep 16, 2018 2:08:1	10 AM [2048x51]	2]						
Trigger Mode Gate Mode DDG Intelligate	EXTERNAL DDG true	400 - 380 - 360 - 340 - 320 - 300 - 280 -									
		200	400	600	800	1000	1200	1400	1600	1800	
		200 Lock size	400	600	800	1000	1200 Size:	1400 2048 x 512 /user/biswop/	1600 Min. value: 41 data/BTVAWKS	1800 L6 Max. value SPEC Sav	e: ve
Gate Width Gate Delay		Lock size	400	500 1,000 101,	800 .0 μs .2 ms	1000	1200 Size:	1400 2048 x 512 /user/biswop/ Current Tem Current Stat	1600 Min. value: 43 Idata/BTVAWKS perature: us:	1800 L6 Max. value SPEC Sav CO	e: ve -:
Gate Width Gate Delay MCP Gain	0 250 0 250 0 250 0 250 0 250	Lock size	400 750 750 2,454 2,863	600 1,000 1,000 101. 3,272 3,681	800 .0 μ5 .2 ms		1200 Size:	1400 2048 x 512 /user/biswop/ Current Tem Current Statu Temp. Statu: Target Temp Fan:	1600 Min. value: 41 ddata/BTVAWKS perature: us: s: b.:	1800 16 Max. value SPEC Sav CO TEMP_STAB	e: ve -: BILI -:
Gate Width Gate Delay MCP Gain Exposure time	0 250 0 250 0 409 818 0.6012	Lock size	750 750 750 045 2,454 2,863	600 1,000 1,000 101. 3,272 3,681	800 .0 μs .2 ms .4,095		1200 Size:	1400 2048 x 512 /user/biswop/ Current Tem Current Statu Temp. Statu Target Temp Fan: Cooler:	1600 Min. value: 43 Idata/BTVAWKS perature: us: s: b.:	1800 L6 Max, value SPEC Sav CO TEMP_STAB	e: ve -: BILI -:
Gate Width Gate Delay MCP Gain Exposure time Valid Exposure Ti Readout time	0 250 0 250 0 409 818 0.6012 ime 0.10 s 0.23 s	200 Lock size 500 1,227 1,636 2, 5 ✓	400 750 750 750 045 2,454 2,863	600 1,000 1,000 101 1,000 101 3,272 3,681	800 .0 μs .2 ms 4,096 3000.0		1200 Size:	1400 2048 x 512 /user/biswop/ Current Tem Current Statu Target Temp Fan: Cooler: UPS Status:	1600 Min. value: 43 Min. value: 43 perature: us: s: b::	1800 L6 Max. value SPEC Sav CO TEMP_STAB	e: ve -: BILI -: EC
Gate Width Gate Delay MCP Gain Exposure time Valid Exposure Ti Readout time Gain	0 250 0 250 0 409 818 0.6012 ime 0.10 s 0.23 s 1.0	200 Lock size	400 750 750 045 2,454 2,863	500 1,000 1,000 101 3,272 3,681	.0 μs .2 ms .4,096 3000.0		1200 Size:	1400 2048 x 512 /user/biswop/ Current Tem Current Statu Temp. Statu: Target Temp Fan: Cooler: UPS Status: UPS not Prot	1600 Min. value: 41 Iddata/BTVAWKS perature: us: s: b.: ected:	1800 L6 Max. value SPEC Sav CO TEMP_STAB PROTH UNKI	e: ve -2 00L 8ILI -2 EC
Gate Width Gate Delay MCP Gain Exposure time Valid Exposure Ti Readout time Gain	0 250 0 250 0 409 818 0.6012 10 10	200 Lock size 500 1,227 1,636 2, 5 ✓	400 750 750 750 750 750 750 750 750 750	500 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	.0 μs .2 ms .4,095 3000.0	1000	1200 Size:	1400 2048 x 512 /user/biswop/ Current Stati Temp. Statu: Target Temp Fan: Cooler: UPS Status: UPS not Prot	1600 Min. value: 41 Idata/BTVAWKS perature: us: s: b:: ected: Initialize	1800 L6 Max. value PPEC Sav CO TEMP_STAB PROTH UNKI	e: ve -2 00L 81L1 -3 EC

- This is an extremely important diagnostic for AWAKE.
- Also an extremely complicated diagnostic:
 - Scintillating screen
 - Massive optical system
 - Calibration system
 - Dark room
 - Spectrometer camera
 - FESA Class

We have achieved a level of reliability with this diagnostic thanks to the dedicated efforts of the UCL and CERN BI groups.

Streak Camera Diagnostic

M. Martyanov, K. Rieger, F. Batsch, P. Muggli, MPP I. Gorgisyan, S. Mazzoni, D. Medina, BI

- This an extremely important diagnostic for AWAKE.
- Also an extremely complicated diagnostic:
 - OTR screens
 - Transport optics
 - Marker laser
 - Dark room
 - Streak Camera
 - RemoteEx connection
 - FESA Class

This diagnostic works well because of a strong initial effort from CERN BI and a continuous effort to improve the device by the MPP group.

Halo Camera Diagnostic

M. Turner, EN-EA I. Gorgisyan, S. Mazzoni, BI

- This an extremely important diagnostic for AWAKE.
- Also an extremely complicated diagnostic:
 - OTR screens
 - Transport optics
 - Movable mask
 - Core camera
 - Halo camera

We have achieved a level of reliability with this diagnostic thanks to the dedicated effort of the M. Turner and the CERN BI group.

AWAKE Research Highlights

Experimental observation of proton bunch modulation in a plasma, at varying plasma densities Submitted to Phys. Rev. Lett. *Experimental observation of plasma wakefield growth driven by the seeded self-modulation of a proton bunch* Submitted to Phys. Rev. Lett.

AWAKE Research Highlights

LETTER

OPEN https://doi.org/10.1038/s41586-018-0485-4

Acceleration of electrons in the plasma wakefield of a proton bunch

E. Adli¹, A. Ahuja², O. Apsimon^{3,4}, R. Apsimon^{4,5}, A.–M. Bachmann^{2,6,7}, D. Barrientos², F. Batsch^{2,6,7}, J. Bauche²,
V. K. Berglyd Olsen¹, M. Bernardini², T. Bohl², C. Bracco², F. Braunmüller⁶, G. Burt^{4,5}, B. Buttenschön⁸, A. Caldwell⁶, M. Cascella⁹,
J. Chappell⁹, E. Chevallay², M. Chung¹⁰, D. Cooke⁹, H. Damerau², L. Deacon⁹, L. H. Deubner¹¹, A. Dexter^{4,5}, S. Doebert²,
J. Farmer¹², V. N. Fedosseev², R. Fiorito^{4,13}, R. A. Fonseca¹⁴, F. Friebel², L. Garolfi², S. Gessner², I. Gorgisyan², A. A. Gorn^{15,16},
E. Granados², O. Grulke^{8,17}, E. Gschwendtner², J. Hansen², A. Helm¹⁸, J. R. Henderson^{4,5}, M. Hüther⁶, M. Ibison^{4,13}, L. Jensen²,
S. Jolly⁹, F. Keeble⁹, S.–Y. Kim¹⁰, F. Kraus¹¹, Y. Li^{3,4}, S. Liu¹⁹, N. Lopes¹⁸, K. V. Lotov^{15,16}, L. Maricalva Brun², M. Martyanov⁶,
S. Mazzoni², D. Medina Godoy², V. A. Minakov^{15,16}, J. Mitchell^{4,5}, J. C. Molendijk², J. T. Moody⁶, M. Moreira^{2,18}, P. Muggli^{2,6},
E. Öz⁶, C. Pasquino², A. Pardons², F. Peña Asmus^{6,7}, K. Pepitone², A. Perera^{4,13}, A. Petrenko^{2,15}, S. Pitman^{4,5}, A. Pukhov¹², S. Rey²,
K. Rieger⁶, H. Ruhl²⁰, J. S. Schmidt², I. A. Shalimova^{16,21}, P. Sherwood⁹, L. O. Silva¹⁸, L. Soby², A. P. Sosedkin^{15,16}, R. Speroni²,
R. I. Spitsyn^{15,16}, P. V. Tuev^{15,16}, M. Turner², F. Velotti², L. Verra^{2,22}, V. A. Verzilov¹⁹, J. Vieira¹⁸, C. P. Welsch^{4,13}, B. Williamson^{3,4},
M. Wing⁹*, B. Woolley² & G. Xia^{3,4}

First demonstration of acceleration of an electron witness beam by a selfmodulated proton drive beam. Published 29 August!

We demonstrated a dependence of acceleration on plasma density and gradient.

AWAKE Recent Results

Our new measurements are focused on:

- Optimization of injection parameters
- Understanding the physics of electron beam injection
- Longitudinal mapping of the plasma wakefield

0.8 pC Event @ 0.5E14 Density

Summary of AWAKE Diagnostics

Device	Protons	Electrons	Laser	Number	Rep Rate	Issues?
Proton BPMs	Yes			20	Cycle	Yes, when plasma present
Electron BPMs	Yes	Yes		12	10 Hz	Synchronicity, No readings when protons present
BTVs	Yes	Yes	Yes	3	Cycle/1 Hz	Synchronicity
Digital (PXI) Cameras	Yes	Yes	Yes	20	Cycle/10 Hz	Radiation hardness
Streak Camera	Yes	Yes	Yes	2	Cycle/1 Hz	VTU system and PPM-ness
Spectrometer Camera	Yes	Yes		1	Cycle/1 Hz	
Laser energy meter			Yes	5	Cycle/1 Hz	Synchronicity, Robustness
Faraday Cup		Yes		1	10 Hz	
Electron BLMs	Yes	Yes		8	Async	FileReader
CTR Heterodyne	Yes			1	Async	FileReader
Rb spectrograph				2	Async	FileReader
Autocorrelator			Yes	1	Async	FileReader

P. Gander, C. Charrondiere, S. Gessner

PXI Radiation Hardness

Upstream Cameras

Downstream Cameras

For the cameras upstream of the plasma cell, the per-shot-SEU probability is extremely low, about 0.05%.

Excluding the OTR/CTR camera, the per-shot SEU probability for the downstream cameras averages about 0.5%.

We have achieved a level of robustness and reliability with this diagnostic.

Data Rate Issue

Data from a single image is between 1-10 Megabytes.

The data rate is measured in Gbps (Gigabits per second).

One Megabyte is approximately 10 Megabits.

Therefore, a 10 Megabyte image (MB) streamed at 10 Hz works out to roughly 1 Gbps.

Data from a *single camera* at 10 Hz is enough to overwhelm the network.

We have approximately 30 cameras in operation at AWAKE.

Data Rate Issue

FACET Model

Conclusions

- Overall, AWAKE Run 1 has been extremely successful!
 - No results possible without excellent beam diagnostics like the streak camera, spectrometer camera, and halo monitors.
- We use 20+ digital cameras at AWAKE.
 - The PXI system is robust and reliable.
- Much of the AWAKE beam instrumentation is "bricolage"
 - Especially "FileReader" devices.
- Synchronization and 10 Hz operation is a major issue.
- AWAKE requires a DAQ system that meets it's needs.