Outlook for AWAKE run #2

(discuss new or special diagnostics)

Patric Muggli Max Planck Institute for Physics Munich muggli@mpp.mpg.de https://www.mpp.mpg.de/~muggli

REACHING HIGH ENERGY?

♦SLAC-like driver for staging (FACET= 1 stage, collider 10⁺ stages)

J. Rosenzweig et al. /Nucl. Instr. and Meth. in Phys. Res. A 410 (1998) 532-543

 \diamond Drive (e⁻, p⁺) and witness (e⁻, e⁺) must fit within the structure

$$\begin{aligned} & \diamond \text{Linear theory} \\ & (n_b << n_e) \text{ scaling:} \end{aligned} \qquad \begin{aligned} & E_{acc} \cong 110(MV/m) \frac{N/2 \times 10^{10}}{\left(\sigma_z / 0.6 mm\right)^2} \\ & @ k_{pe} \sigma_z \approx \sqrt{2} \ (with \ k_{pe} \sigma_r << 1) \end{aligned} \qquad \begin{aligned} & \approx N/\sigma_z^2 \\ & k_{pe} = \omega_{pe} / c \propto n_e^{1/2} \end{aligned}$$

♦ AWAKE: σ_z =6-12cm => E_{acc}~MV/m

♦Instead: $k_{pe}\sigma_r = 1 => \sigma_r = 200 \mu m => n_e = 7 \times 10^{14} cm^{-3}$, but $k_{pe}\sigma_z >> 1$

♦Need self-modulation to create $k_{pe}\sigma_z$ ~1 to reach ~1GV/m

NAX-PLANCK-GESELLSCHAFT P. Muggli, 1st AWAKE Instr. Meet. 09/27/2018

J. Vieira et al., Phys. Plasmas 19, 063105 (2012)_{ggli, 1st} AWAKE Instr. Meet. 09/27/2018

© P. Muggli

MAX-PLANCK-GESELLSCHAFT P. Muggli, 1st AWAKE Instr. Meet. 09/27/2018

♦Get approved at CERN!

Date: September 23, 2013 10:29:55 AM GMT+02:00

To: Frederick Bordry <<u>Frederick.Bordry@cern.ch</u>>, Roberto Saban <<u>Roberto.Saban@cern.ch</u>>, Paul Collier <<u>Paul.Collier@cern.ch</u>>, Jose Miguel Jimenez <<u>Jose.Miguel.Jimenez@cern.ch</u>> Cc: Steve Myers <<u>Steve.Myers@cern.ch</u>>, Edda Gschwendtner <<u>Edda.Gschwendtner@cern.ch</u>> Subject: AWAKE Project Leader Mandate

Dear All,

Please find attached the AWAKE Project Leader Mandate for distribution within your departments.

Kind regards,

♦Demonstrate self-modulation of the long p⁺ bunch in a dense plasma

♦Demonstrate acceleration of externally injected e⁻

♦OTR+ streak camera for time-resolved p+ bunch images

♦ CTR frequency analysis diagnostic

© P. Muggli

Diagnostics were appropriate for SSM measurements

Vapor source has "density ramp" at ends

AWAKE: e⁻ INJECTION

♦ Wakefields slower than drive bunch when SSM grows ...
♦ Must inject at z>0
♦ Run 1: side injection
♦ Run 2: inject z>5m(?)

AWAKE: e⁻ INJECTION

K. V. Lotov, Journal of Plasma Physics 78(04), 455 (2012).

Figure 3. (Colour online) Family of electron trajectories for (a) $\tilde{v} = -0.7$, and (b) $\tilde{v} = -1$. Lower graphs show the location of potential wells and humps.

- ♦e⁻ have to "cross" wakefields
- Complicated trajectories

♦Low capture

♦Dependencies on angle and position

Run 1 choice: σ_{z, e-}>λ_{pe} => no <1ps timing required
 Run 2 must have σ_{z, e-}<<λ_{pe} => ~100fs timing required
 Timing between seed laser pulse and RF-gun laser pulse or e⁻ bunch

AWAKE RUN 1: ACCLERATION

Debriefing from Run 1 to improve for Run 2!

♦e⁻ spectrometer standard
♦Challenge: background from p⁺ secondaries

AWAKE RUN 2: GOAL

Acceleration of an externally injected e⁻ bunch with small final ε and ΔE/E @ GeV

Challenge: put the witness e⁻ bunch in the right place
 Preserve its quality (low emittance, narrow energy spread)
 Scalability

AWAKE RUN 2: GOAL

Acceleration of an externally injected e⁻ bunch with small final ϵ and $\Delta E/E$ @ GeV

PHYS. REV. ACCEL. BEAMS 21, 011301 (2018)

"From acceleration to accelerator!" Goal of all advanced accelerator concepts

Typical parameters:

 $σ_z$ =60µm $σ_r$ =5.25µm (matched for ε_N=2mm-mrad, n_e=7x10¹⁴cm⁻³, ~ε_N^{1/4}) Q=100pC Blow-out and beam loading ~73% charge with Δε_N/ε_N<5%, ΔE/E~%

+Challenging parameters to produce with low energy particles (σ_r, σ_z)

♦ Challenging to measure (σ_r)

MAX-PLANCK-GESELLSCHAFT P. Muggli, 1st AWAKE Instr. Meet. 09/27/2018

↔Acceleration of an externally injected e⁻ bunch with small final ε and ΔE/E @ GeV ↔Decouple SSM and acceleration

AWAKE RUN 2 DIAGNOSTICS

Wakefields (plasma): Schlieren, interferometry, photon acceleration, ???

♦e⁻: standard beam line diagnostics, screen-based?

♦e-/p+ alignment: OTRs, screens, ???

♦Timing ♦Timing e⁻/p⁺: online EOS (p⁺ halo?) ♦Timing e⁻/wakefields?

 \diamond Emittance: single shot (β-tron, optical pepper pot, ???), separate e⁻/p⁺

◆Laser-ionized, rubidium plasma imposes strong constraints (200°C, chemically reactive, metal deposition?, etc.
 ◆p⁺ bunch at (1/20)Hz at best …

♦AWAKE Run 1 was very successful: SSM & acceleration of e⁻ to 2GeV

- ♦SSM and acceleration diagnostics were appropriate
- ♦Fell short on e⁻ injection diagnostics

♦AWAKE Run 2 is about e⁻ beam quality and needs (diagnostics):

Need in-situ spatial alignment screens (few µm level)

Excellent and new diagnostics are **absolutely** key for Run 2!

, Augriment diagnostics are onalienging (temperature and rubidiam)

- ♦Energy measurement is OK
- ♦Some Run I diagnostics directly transfer, but debriefing would be beneficial
- ♦SSM diagnostics are key to the experiment
- ♦Many issues "solved on the fly"
- ♦Bottom line: better diagnostics = better experiment

Thank you to my collaborators!

Thank you!

http://www.mpp.mpg.de/~muggli

muggli@mpp.mpg.de

e⁻ Witness

2) Energy is "stored" in the wakefields sustained by the oscillatory motion of the plasma e⁻, charge

1) Drive bunch loses energy driving the wakefields

Replaces:

e⁻ Driver

MAX-PLANCK-GESELLSCHAFT P. Muggli, 1st AWAKE Instr. Meet. 09/27/2018

Replaces:

♦Is it a high gradient accelerator?

separation

PROTON-DRIVEN PWFA

♦Accelerate an e⁻ bunch on the wakefields of a p⁺ bunch

Single stage, no gradient dilution

Gradient ~1 GV/m over 100's m

♦ Operate at lower n_e (6x10¹⁴cm⁻³), larger (λ_{pe})³, easier life ...

PROTON-DRIVEN PWFA

♦Accelerate an e⁻ bunch on the wakefields of a p⁺ bunch

Single stage, no gradient dilution

Gradient ~1 GV/m over 100's m

♦ Operate at lower n_e (6x10¹⁴cm⁻³), larger (λ_{pe})³, easier life ...

