
New results from TOTEM

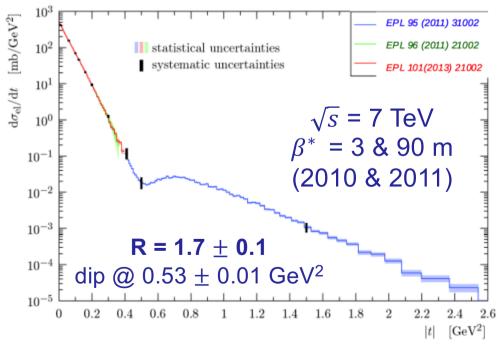
K. Österberg,Department of Physics &Helsinki Institute of Physics,University of Helsinki

on behalf of **TOTEM collaboration**

LHC working group on Forward Physics and Diffraction 18.12.2018

Outline:

- Diffractive dip observation @ \sqrt{s} = 2.76 & 13 TeV
- $\sigma_{\text{tot}} \otimes \sqrt{s} = 13 \text{ TeV with } \beta^* = 2.5 \text{ km}$
- Summary of the 900 GeV run

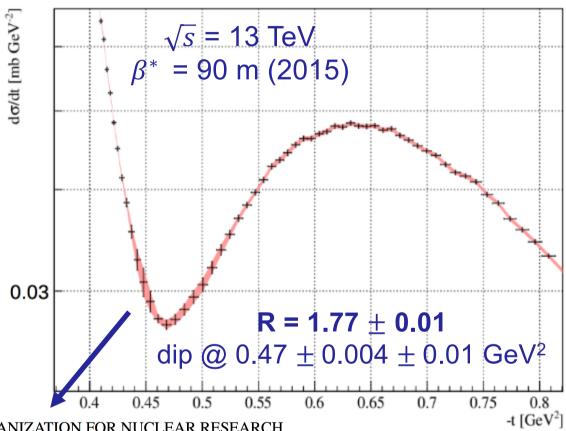


Diffractive dip in pp @ LHC

Hadronic elastic @ TeV \sqrt{s} dominated by t-channel exchange of colourless gluon states:

- · 2 (or even) gluon exchange ($J^{PC} = 0^{++}, 2^{++}$): "Pomeron" \Rightarrow pp vs p \bar{p} invariance
- . 3 (or odd) gluon exchange ($J^{PC} = 1^{--}$): "Odderon" \Rightarrow no pp vs p \bar{p} invariance
- @ dip: 2g exchange (\sim imaginary) suppressed \Rightarrow 3g exchange (\sim real) observable ?

TOTEM: observation of diffractive dip in $d\sigma_{el}/d|t|$ @ \sqrt{s} = 7 TeV

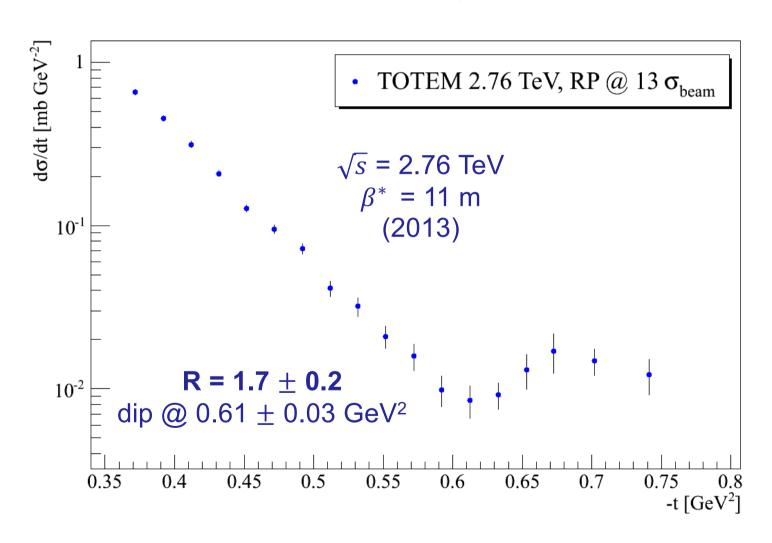


 $R \equiv \text{max/dip ratio of } d\sigma_{\text{el}}/d|t|$

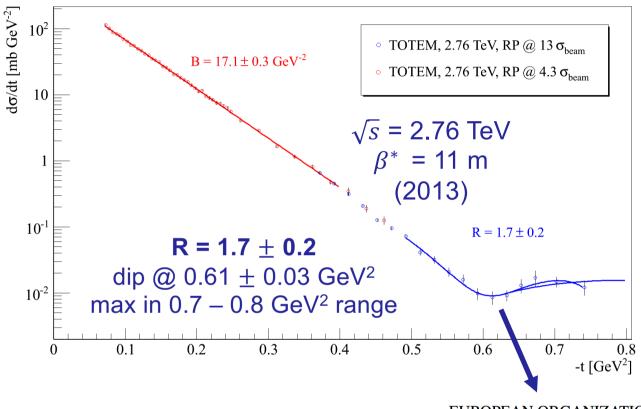
Diffractive dip in pp @ \sqrt{s} = 13 TeV

TOTEM: observation of diffractive dip in $d\sigma_{el}/d|t|$ @ \sqrt{s} = 13 TeV

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH


paper approved by CERN-PH, soon in CDS!!

Elastic differential cross-section measurement at $\sqrt{s} = 13$ TeV by TOTEM

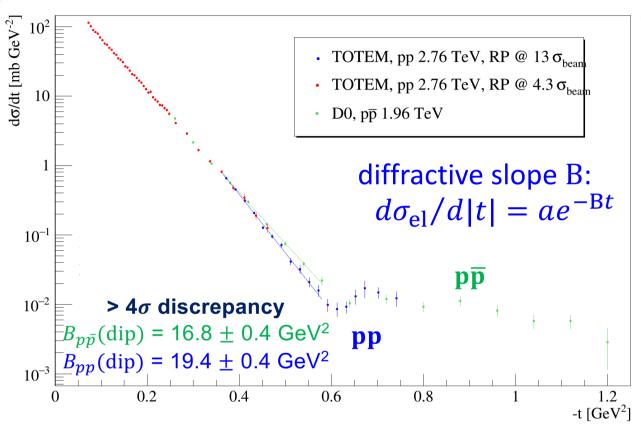

Diffractive dip in pp @ \sqrt{s} = 2.76 TeV

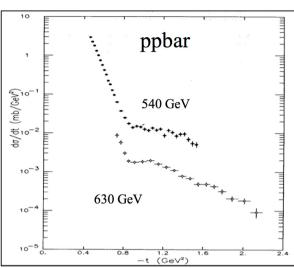
Observation of diffractive dip in $d\sigma_{el}/d|t|$ @ \sqrt{s} = 2.76 TeV !!

Diffractive dip in pp @ \sqrt{s} = 2.76 TeV

Persistency of diffractive dip for pp at any TeV \sqrt{s}

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH


paper submitted to CERN-PH!!

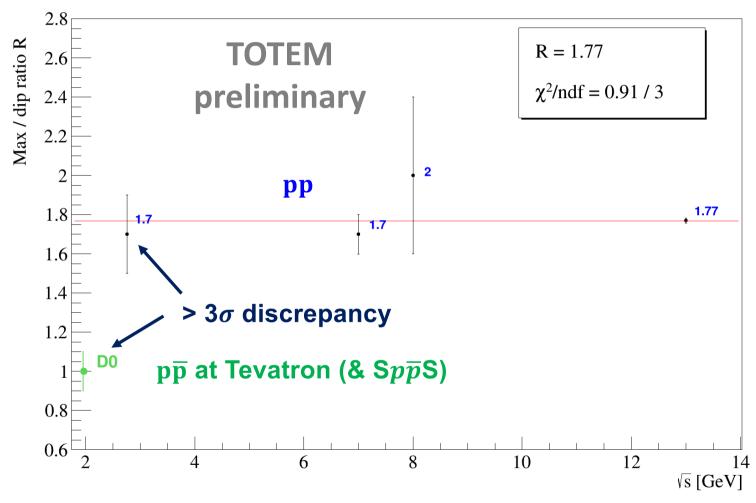


Elastic differential cross-section ${\rm d}\sigma/{\rm d}t$ at \sqrt{s} =2.76 TeV and implications on the existence of a colourless 3-gluon bound state

Diffractive dip in pp & pp @ TeV scale

TOTEM

Also B-slope approaching "dip" different for pp & $p\bar{p}$ (NB! D0 B-slope estimated from published $d\sigma_{\rm el}/dt$)

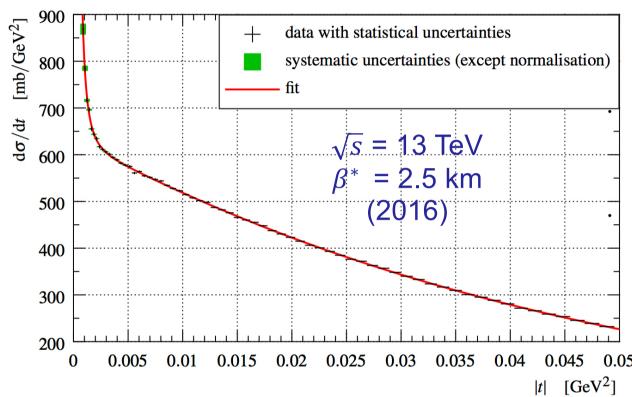

D0 Collaboration, Phys. Rev. D 86 (2012) 012009: "A comparison of the shape of our measured $d\sigma/dt$, but, as in the UA4 data, we do not see a distinct minimum as observed in pp elastic scattering [TOTEM 7 TeV publication]."

Persistency of dip for pp & absence of dip for pp

Diffractive dip in pp & pp @ TeV scale

 $R \equiv \text{max/dip ratio of } d\sigma_{\text{el}}/d|t|$

Max/dip $d\sigma_{\rm el}$ ratio R ~ constant in pp & R in pp \gg R in p $\overline{\rm p}$



pp vs pp @ TeV scale

- Sep 2018 LHCC minutes: "A joint working group with D0 has been set up, to compare TOTEM results with those in proton-antiproton collisions at comparable energy of 1.96 TeV. A significant difference would be evidence for odderon exchange in hadronic elastic scattering".
- . V.A. Khoze: "any significant difference in $d\sigma_{\rm el}/dt$ between pp and p $\bar{\rm p}$ @ \sqrt{s} > 0.5 1 TeV would be evidence of the odd signature term the Odderon contribution"
- Already @ ISR difference between pp & pp̄ regarded as "Odderon" evidence
 ⇒ classical "Odderon" evidence [L. Lukaszuk & B. Nicolescu, Lett. Nuovo Cim. 8 (1973) 405]
- Observed TOTEM/D0 difference \Rightarrow Odderon \Rightarrow 3g J^{PC} = 1- in QCD !! (modulo \sqrt{s} difference D0 @ 1.96 TeV vs TOTEM @ 2.76 TeV) \Rightarrow implication: tensor nature of QCD & existence of vector glueballs !!
- Major effort together with D0 to make model-dependent & -independent extrapolations of $d\sigma_{\rm el}/d|t|$ characteristics of pp to same \sqrt{s} as D0 measurement of $d\sigma_{\rm el}/d|t|$ in p $\overline{\rm p}$ for ultimate quantification of difference

$\sigma_{\text{tot}} @ \sqrt{s} = 13 \text{ TeV with } \beta^* = 2.5 \text{ km}$

$$\sigma_{\text{tot}}^2 = \frac{16\pi \left(\hbar c\right)^2}{1 + \rho^2} a$$

Fits to determine hadronic B-slope & amplitude a, ρ & absolute normalisation.

Resolve Coulomb hadronic interference contribution

Very low-|t| reach allows to determine normalisation using Coulomb amplitude for first time at LHC!!

- approach 1: normalisation from lumi-independent σ_{tot} @ β^* = 90m.
- approach 2: normalisation estimated from β^* = 2.5 km data adding to χ^2 a term reflecting deviation from lumi-independent σ_{tot} in standard deviations.
- approach 3: normalisation estimated from β^* = 2.5 km data using only part sensitive to QED cross-section.

$\sigma_{\text{tot}} @ \sqrt{s} = 13 \text{ TeV with } \beta^* = 2.5 \text{ km}$

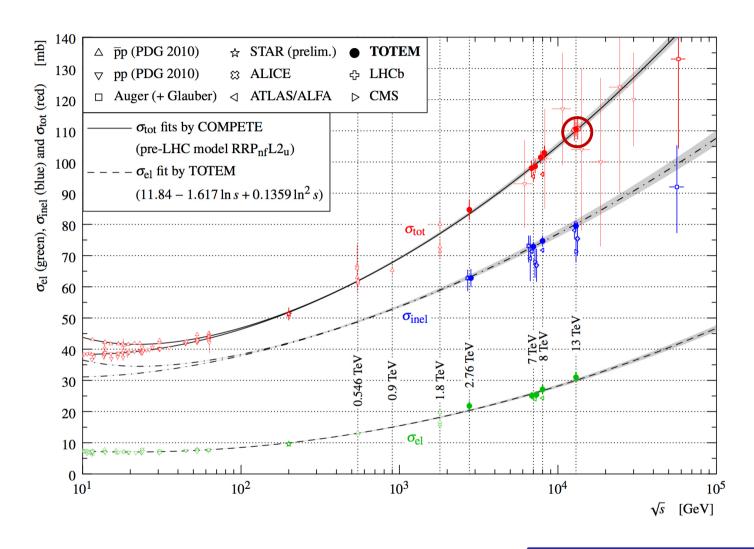
Table 6: Summary of ρ and total cross-section results.

data	method	ρ	$\sigma_{ m tot}$ [mb]	
$\beta^* = 90 \mathrm{m}$	lumi-ind.	-,	110.6 ± 3.4	\vdash
$\beta^* = 2500\mathrm{m}$	approach 1	0.09 ± 0.01	111.8 ± 3.2	
	approach 2	0.09 ± 0.01	111.3 ± 3.2	_
	approach 3	$0.08(5) \pm 0.01$	110.3 ± 3.5	\vdash
	approach 3 (single fit)	0.10 ± 0.01	109.3 ± 3.5	_
$\beta^* = 90 \text{ and } 2500 \text{ m}$	lumi-ind. \oplus approach 3		110.5 ± 2.4	

combining two independent data sets & methods !!

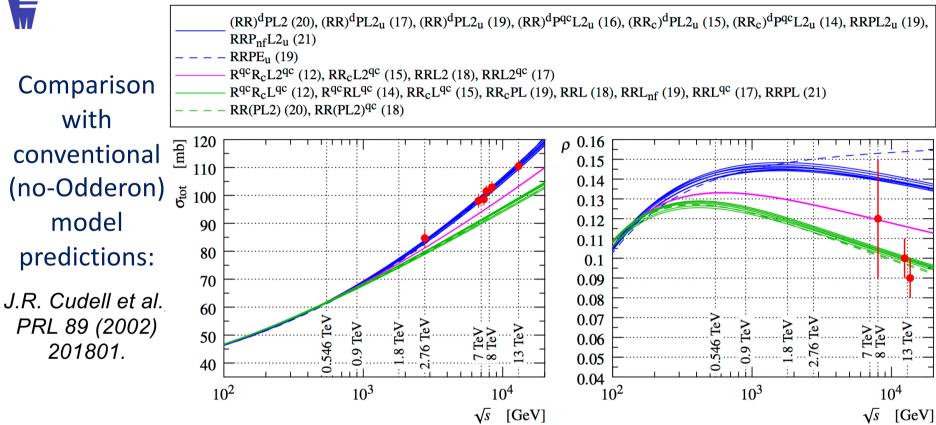
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-EP-2017-335-v3 30 November 2018


First determination of the ρ parameter at $\sqrt{s}=13$ TeV – probing the existence of a colourless three-gluon bound state

For more details see dedicated talk by J. Kaspar

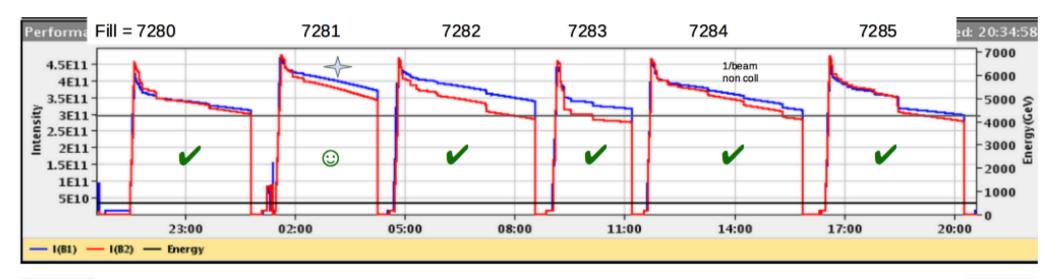
CERN-EP-2017-335 & arXiv:1812.04732 !!

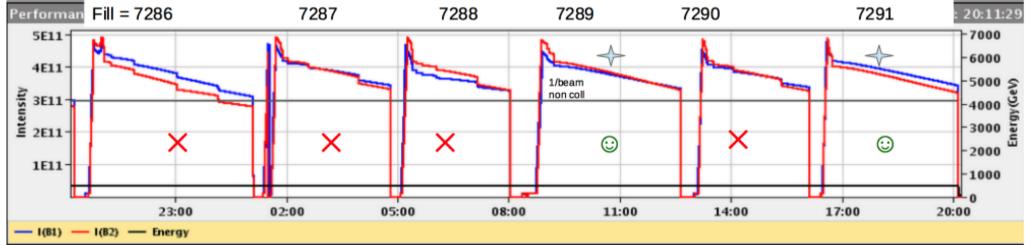

σ_{tot} , σ_{inel} & σ_{el} vs \sqrt{s}

new TOTEM average @ \sqrt{s} = 13 TeV: σ_{tot} = 110.5 \pm 2.4 mb

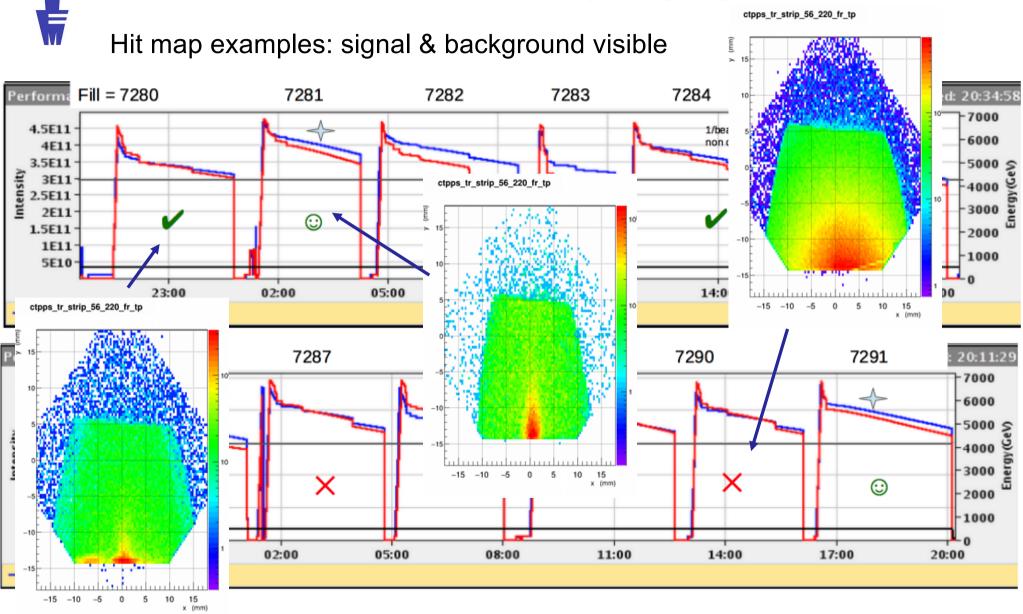
Compatibility with model predictions

no conventional (no-Odderon) model able to describe simultaneously TOTEM σ_{tot} & ρ measurements

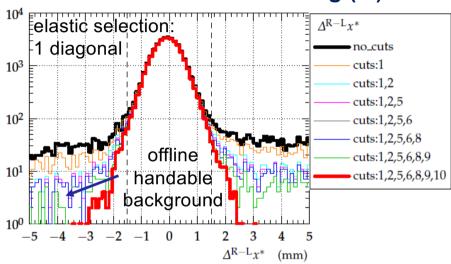

(increased signficance w.r.t. before) \Rightarrow

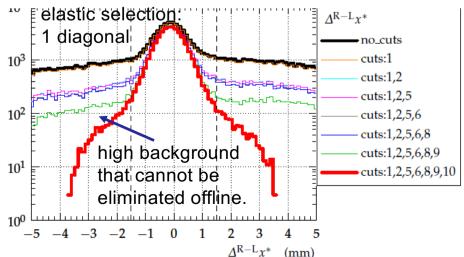

adding 3g t-exchange improves model descriptions (t = 0 Odderon!)

recently taken 900 GeV data able to provide characteristics of the t-channel coulourless 3g bound state

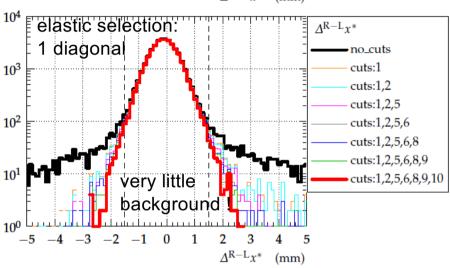

900 GeV run: summary high β^* fills

900 GeV run: summary high β^* fills




900 GeV run: operations & summary

- Two collimation scheme: standard (tight) & crystal
- Both challenging: required stability $\sim 0.2\sigma$


standard collimation working (✔)

standard collimation NOT working (X)

crystal collimation (+)

- # of collected good elastics:
- \sim 1M high β^* & \sim 2M β^* = 11m

Big thanks both to LHC team (especially collimation team) & CMS for the succesful run & data taking !!

Summary

- Observation of diffractive dip @ \sqrt{s} = 2.76 & 13 TeV \Longrightarrow persistence of dip @ TeV scale in pp & absence in p \overline{p} \Longrightarrow expected behaviour of t-channel exchange of coulorless 3-gluon bound state ("Odderon")
- $\checkmark~pp\ \&\ p\overline{p}$ difference to be quantified in joint TOTEM-D0 analysis
- $_{ ilde{\prime}}$ First $\sigma_{
 m tot}$ at LHC using QED for normalisation; giving consistent ho & $\sigma_{
 m tot}$ with lumi-independent $\sigma_{
 m tot}$
- σ_{tot} Combined with lumi-independent σ_{tot} to give $\sigma_{tot} = 110.5 \pm 2.4$ mb (significantly improved precision)
- TOTEM σ_{tot} & ρ measurements not compatible with conventional (no-Odderon) models \Longrightarrow indication of t-channel exchange of coulorless 3-gluon bound state ("Odderon")
- Successful run & data taking @ \sqrt{s} = 900 GeV; stay tuned for the results