

Looking forward to new physics with FASER: ForwArd Search ExpeRiment at the LHC

Sebastian Trojanowski University of Sheffield

LHC Working Group on Forward Physics and Diffraction CERN, December 18, 2018

The University Of Sheffield.

Science & Technology Facilities Council UK Research and Innovation

(FASER group see https://twiki.cern.ch/twiki/bin/viewauth/FASER/WebHome)

Email to the group: faser-all@cern.ch

arXiv:1708.09389;1710.09387;1801.08947;1806.02348 (PRD,with J.L.Feng,I.Galon,F.Kling) FASER Collaboration: arXiv:1811:10243 Letter of Intent (CERN-LHCC-2018-030) arXiv:1811.12522 (physics case)

FASER COLLABORATION

Akitaki Ariga,¹ Tomoko Ariga,^{1,2} Jamie Boyd,³ Franck Cadoux,⁴ David W. Casper,⁵
Yannick Favre,⁴ Jonathan L. Feng,⁵ Didier Ferrere,⁴ Iftah Galon,⁶ Sergio Gonzalez-Sevilla,⁴
Shih-Chieh Hsu,⁷ Giuseppe Iacobucci,⁴ Enrique Kajomovitz,⁸ Felix Kling,⁵
Susanne Kuehn,³ Lorne Levinson,⁹ Hidetoshi Otono,² Brian Petersen,³ Osamu Sato,¹⁰ Matthias Schott,¹¹ Anna Sfyrla,⁴ Jordan Smolinsky,⁵ Aaron M. Soffa,⁵
Yosuke Takubo,¹² Eric Torrence,¹³ Sebastian Trojanowski,^{14,15} and Gang Zhang¹⁶

OUTLINE

- Motivation behind the intensity frontier searches for light long-lived particles (LLPs)
- FASER: ForwArd Search ExpeRiment at the LHC
- Remarks about FASER physics program
 - -- dark photons,
 - -- axion-like particles,
 - -- possible measurements for SM neutrinos
 - -- ... and many other models
- Background: simulations & in-situ measurements
- Concluding remarks

MOTIVATION

FASER - IDEA

FASER – newly proposed, small ($\sim 0.05 \text{ m}^3$) and inexpensive ($\sim 1.5M$ \$) detector to be placed few hundred meters downstream away from the ATLAS IP

to harness large, currently "wasted" forward LHC cross section

FASER LOCATION – TUNNEL TI12

FASER

6

- promising location in a side tunnel TI12 (former service tunnel connecting SPS to LEP)
- about L ~ 480m away from the IP along the beam axis
- space for a few-meter-long detector
- precise position of the beam axis in the tunnel up to mm precision (CERN Engineering Dep)
- corrections due to beam crossing angle (for 300µrad the displacement is ~7 cm)

TUNNEL TI12

new physics (hidden in the dark)

main LHC tunnel

BASIC DETECTOR LAYOUT

• 2 stages of the project:

FASER 1: L = 1.5 m, R = 10 cm, $V = 0.05 \text{ m}^3$, 150 fb⁻¹ (Run 3)

FASER 2: L = 5 m, R = 1 m, $V = 16 \text{ m}^3$, 3 ab⁻¹ (HL-LHC)

SIGNAL DETECTION

Signal is a pair of oppositely charged high-energy particles e.g. 1 TeV A' -> e⁺e⁻

In the following we assume 100% detection efficiency for a better comparison with other experiments

Ongoing work on full detector simulations

CHARGED TRACK SEPARATION EFFICIENCY

1st tracking station

2nd/3rd tracking station (separation > 0.3mm)

EXAMPLE OF LHC/FASER KINEMATICS LLP FROM PION PRODUCTION AT THE IP

Soft pions going towards high- p_T detectors:

- produced LLPs would be too soft for triggers
- large SM backgrounds

Hard pions highly collimated along the beam axis since their $p_T \sim \Lambda_{QCD}$ e.g. for $E_{\pi 0} \ge 10 \text{ GeV}$ ~ 1.7% of $\pi_0 s$ go towards FASER ~ 24% of $\pi_0 s$ go towards FASER 2

FASER

This can be compared to the angular size of both detectors with respect to the total solid angle of the forward hemisphere (2π) :

- ~ $(2 \times 10^{-6})\%$ for FASER
- ~ $(2 \times 10^{-4})\%$ for FASER 2

COMPARISON - VARIOUS MC TOOLS

CRUCIAL CONTRIBUTION FROM LHC FORWARD PHYSICS AND DIFFRACTION WG

FASER

DARK PHOTON

1708.09389, PRD 97 (2018) no.3, 035001

- (broken) dark U(1) gauge group,

SeaQuest

10⁻¹

 $m_{A'}$ [GeV]

- kinetic mixing with the SM photon: $\epsilon F^{\mu\nu} F'_{\mu\nu}$,
- after field redefinition:

10⁻³

10-

ພ 10^{−5}

 10^{-6}

 10^{-7}

10

EASER

ark Photon

$$\mathcal{L} \supset -\frac{1}{4} F^{\mu
u} F_{\mu
u} - \frac{1}{4} F'^{\mu
u} F'_{\mu
u} + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} + \sum \bar{f}(i\partial \!\!\!/ - \epsilon \, eq_f \, A') f^{\mu
u}$$

- production: π^0 and η decays, bremsstrahlung, direct production in $q\bar{q}$ scatterings
- decays: dominantly into e^+e^- and $\mu^+\mu^-$ up to ~ 500 MeV,

then various hadronic decay modes

$$\bar{d} = c \frac{1}{\Gamma_{A'}} \gamma_{A'} \beta_{A'} \approx (80 \text{ m}) B_e \left[\frac{10^{-5}}{\epsilon}\right]^2 \left[\frac{E_{A'}}{\text{TeV}}\right] \left[\frac{100 \text{ MeV}}{m_{A'}}\right]^2$$

A' as a DM-SM mediator

FASER 2 comparable to proposed large SHiP detector

- Other models include e.g.: Physics case: 1811.12522 -- B-L gauge bosons
- -- dark Higgs boson J. L. Feng, I. Galon, F. Kling, ST, 1710.0938
- -- heavy neutral leptons F. Kling, ST, ;1801.08947
- -- ALPS J. L. Feng, I. Galon, F. Kling, ST, 1806.02348
- -- inelastic DM A. Berlin, F. Kling, 1810.01879
- -- RPV SUSY D. Dercks, J. de Vries, H. K. Dreiner, Z. S. Wang 1810.03617 12

DARK PHOTON REACH – VARIOUS MC TOOLS & OFFSET

Almost impreceptible differences in reach for various MC tools $\overline{d} \sim \varepsilon^2$ $N_{\rm sig} \propto \mathcal{L}^{\rm int} \epsilon^2 e^{-L_{\rm min}/\overline{d}}$ for $\overline{d} \ll L_{\rm min}$

10-3 no offset d=5cm d=0.5m d=10cm - - d=1m 10 d=20cm ----- d=2m ₩ 10⁻⁵ 10 10 Dark Photon 10^{-1} m_{A'} [GeV]

FASER reach unaffected by a small offset as long as the beam collision axis goes through the detector

no of events grows exponentially with a small shift in ϵ

FASER

FASER

ALPS AT FASER -

1806.02348, PRD 98 (2018) no.5, 055021

LHC AS A PHOTON BEAM DUMP

 similarly to the QCD axion, they can appear as pseudo-Nambu-Goldstone bosons in theories with broken global symmetries

- suppressed dim-5 couplings to gauge bosons $(1/\Lambda) a V^{\mu\nu} \tilde{V}_{\mu\nu}$,
- dim-5 couplings to fermions also allowed $(\partial_{\mu}a/\Lambda)\bar{f}\gamma_{\mu}\gamma_{5}f$,
- interesting pheno scenario dominant $a\gamma\gamma$ coupling

B. Döbrich et al, JHEP 1602 (2016) 018

Photon beam dump (also "light shining through a wall")

14

SM NEUTRINOS IN FASER

Few cm thick lead plate will be put between several front veto layers (in front of FASER)

Incoming neutrinos can CC interact inside the lead plate producing muon μ , with no counterpart in layers in front of the plate

Potentially hundreds of events in FASER

BACKGROUNDS – SIMULATIONS (FLUKA)

Spectacular signal:

- -- two opposite-sign, high energy (few hundred GeV) charged tracks,
- -- that originate from a common vertex inside the decay volume,
- -- and point back to the IP (+no associated signal in a veto layer in front of FASER),
- -- and are consistent with bunch crossing timing.
- Neutrino-induced events: low rate + highly asymmetric momentum distribution
- Very small activity close to FASER from diffractive proton losses
- The radiation level in TI18 is low (<10 $^{-2}$ Gy/year), encouraging for detector electronics.
- Proton showers in a nearby
 Disperssion Suppresor lead to negligible BG
 after ~90m of rocks in front of FASER
- Muons coming from the IP front veto layers

Other particles: detailed simulations, highly reduced rate (shielding + LHC magnets) study by the members of the CERN FLUKA team:

e+

e⁻

	Cut T > 100 GeV		Cut T > 500 GeV		Cut T > 1 TeV	
Part. type	fluence rate (cm ⁻² s ⁻¹)	fluence per bunch crossing per cm ²	fluence rate (cm ⁻² s ⁻¹)	fluence per bunch crossing per cm ²	fluence rate (cm ⁻² s ⁻¹)	fluence per bunch crossing per cm ²
μ+	0.18	6.1·10 ⁻⁹	0.02	5.8.10-10	0.002	6.8.10-11
μ-	0.40	1.3.10.8	0.22	7.4.10.9	0.14	4.6.10.9
n _o	~ 10-7	~ 10 ⁻¹⁴	0	0	0	0
γ	~ 104	~ 10 ⁻¹²	~ 10 ⁻⁶	~ 10 ⁻¹³	~ 10 ⁻⁶	~ 10 ⁻¹³
π	~ 10-5	~ 10 ⁻¹²	~ 10 ⁻⁷	~ 10 ⁻¹⁴	0	0

Process	Expected Number of Events
μ	$540\mathrm{M}$
$\mu + \gamma_{\rm brem}$	41K
$[\mu + (\gamma_{\rm brem} \to e^+ e^-)]$	[7.4K]
$\mu + EM$ shower	22K
μ + hadronic shower	21K

BACKGROUNDS – SIMULATIONS (2)

Cross section of the tunnel containing FASER

Muon flux reduced at FASER location (helpful role of the LHC magnets)

FASER

FASER

BACKGROUNDS – IN-SITU MEASUREMENTS

- Emulsion detectors focusing on a small region around the beam axis (FASER location)
- BatMons (battery-operated radiation monitors)
- First analyses show that given uncertainties results are consistent with FLUKA simulations
- More work ongoing to refine simulations and analyse in-situ measurements

PRACTICALLY ZERO BG SEARCH

FASER – GROWING COLLABORATION

Sep 2017: First paper, J. Feng, I. Galon, F. Kling, ST, PRD 97 035001 (2018)

...within ~year FASER grew to an international collaboration recognized at CERN

Currently: 27 active members from 15 institutions in 8 countries, Spokespersons: Jonathan L. Feng (UC Irvine), Jamie Boyd (CERN)

During LHC Run 2 (2018): detailed BG simulations (CERN Eng Dep) + in-situ measurements

Sep 2018: FASER Letter of Intent – accepted by the LHC Committee

FASER

FORWARD SEARCH EXPERIMENT AT THE LHC

Akitaki Ariga,¹ Tomoko Ariga,^{1,2} Jamie Boyd,^{3,*} Franck Cadoux,⁴ David W. Casper,⁵ Francesco Cerutti,³ Salvatore Danzeca,³ Liam Dougherty,³ Yannick Favre,⁴ Jonathan L. Feng,^{5,†} Didier Ferrere,⁴ Jonathan Gall,³ Iftah Galon,⁶ Sergio
Gonzalez-Sevilla,⁴ Shih-Chieh Hsu,⁷ Giuseppe Iacobucci,⁴ Enrique Kajomovitz,⁸ Felix Kling,⁵ Susanne Kuehn,³ Mike Lamont,³ Lorne Levinson,⁹ Hidetoshi Otono,² John Osborne,³ Brian Petersen,³ Osamu Sato,¹⁰ Marta Sabaté-Gilarte,^{3,11} Matthias Schott,¹² Anna Sfyrla,⁴ Jordan Smolinsky,⁵ Aaron M. Soffa,⁵ Yosuke Takubo,¹³ Pierre Thonet,³ Eric Torrence,¹⁴ Sebastian Trojanowski,¹⁵ and Gang Zhang¹⁶ Currently: longer Technical Proposal submitted to the LHC Committee very important and positive feedback possible approval: March 2019 CERN Research Board

PLAN:

- Install detector during Long Shutdown 2 (work beginning in early 2019)
- -- Data taking during LHC Run 3 (2021-23)
- FASER 2 (major upgrade for HL-LHC)₁₉

FASER IN POPULAR CULTURE

+2=(1-==)(==0==)) +2= (1=2)=

related article

New physics reach even after first 10fb⁻¹ (end of 2021?)

CONCLUSIONS

• Intensity frontier searches – exciting new physics !!!

• FASER is a newly proposed, <u>small and inexpensive</u> experiment to be placed at the LHC to search for Light Long-lived Particles (LLPs) to complement the existing experimental programs at the LHC, as well as other proposed experiments,

• FASER & LHC Committee: Letter of Intent accepted, Technical Proposal submitted

• FASER would not affect any of the existing LHC programs and do not have to compete with them for the beam time etc.

- Rich physics prospects:
- popular LLP models (dark photon, dark Higgs boson, GeV-scale HNLs, ALPs...),
- Many connections to DM and cosmology
- Invisible decays of the SM Higgs,
- Measurments of SM neutrinos
- Possible timeline:

Install FASER 1 in LS2 (2019-20) for Run 3 (150 fb⁻¹)

- R = 10 cm, L = 1.5 m, Target dark photons, B-L gauge bosons, ALPs...

Install FASER 2 in LS3 (2023-25) for HL-LHC (3 ab⁻¹)

- R = 1 m, L = 5 m, Full physics program: dark vectors, ALPs, dark Higgs, HNLs...

FASER

BACKUP

22

EPOS-LHC

INELASTIC P-P COLLISIONS

1708.09389 **DARK PHOTONS AT FASER – KINEMATICS**

<u>A's at the IP</u>

10

10⁵

-10⁴

-10³

 $\cdot 10^{2}$

 10^{-4}

• $\pi^0 \rightarrow A' v$

 Monte Carlo fitted to experimental data (LHCf, ALFA)

- typically $p_T \sim \Lambda_{OCD}$
- for E~TeV → p_T/E ~0.1 mrad
- even ~10¹⁵ pions per (θ ,p) bin

 high-energy π⁰ collimated A's

10⁻³

 $\theta_{A'}$

10⁻²

 10^{-1}

• $\varepsilon^2 \sim 10^{-10}$ suppression but still up to 10⁵ A's per bin

10⁻³ 10⁻⁵ 10⁻⁴ 10⁻³ 10⁻² 10^{-1} $\theta_{A'}$ only highly boosted A's survive until FASER

A's decaying in FASER

d [m] *p_{A'}* [GeV]

10³

10²

10ł

10⁴ π⁰ -----γA'

-10

-10⁻¹

·10⁻²

EPOS- LHC 10³

 $\epsilon = 10^{-5} \cdot 10^{2}$

10

10⁻¹

10⁻²10⁻¹

*m*_{A'}=100 MeV

- E_{∧′} ~TeV • further suppression from
- decay in volume probability
- still up to $N_{A'} \sim 100$ events in FASER,

mostly within r<20cm

FASER

d [m]

10³

10²

10

10⁻¹

10-2

10⁻³

*m*_{A'}=100 MeV

€=10⁻⁵

DARK HIGGS BOSONS 1710.09387, PRD 97 (2018) no.5, 055034

PROBING INVISIBLE DECAYS OF THE SM HIGGS

 $\mathcal{L} \supset - \lambda v h \phi \phi$

- trilinear coupling invisible Higgs decays $h \rightarrow \phi \phi$
- far-forward region: efficient production via off-shell Higgs, $B \rightarrow X_s h^*(\rightarrow \phi \phi)$
- can extend the reach in θ up to $10^{\text{-}6}$ for B(h $\rightarrow \phi \phi$)~0.1
- up to ~100s of events

HEAVY NEUTRAL LEPTONS

seesaw mechanism, e.g., for type-I seesaw

$$\mathcal{L} = \mathcal{L}_{\rm SM} + i\,\bar{\widetilde{N}}_I \partial\!\!\!/ \widetilde{N}_I - F_{\alpha I}\bar{L}_{\alpha}\,\widetilde{N}_I\,\tilde{\Phi} - \frac{1}{2}\bar{\widetilde{N}}_I^c\,M_I\,\widetilde{N}_I + \text{h.c.}$$

- popular model: ν MSM with the lightest N_1 being a DM candidate possibly consistent with 3.5 keV excess and two heavier HNLs, $N_{2,3}$, detectable in LLP searches,
- typically considered in searches for LLPs, possibly a primary motivation to build SHiP
- they mix with the SM (active) neutrinos,
- phenomenologically they behave like *heavy* or *sterile* neutrinos with masses m_{N_I} and mixing angles U_{eI} , $U_{\mu I}$, $U_{\tau I}$
- HNLs can decay into lighter SM particles \Rightarrow signatu

HEAVY NEUTRAL LEPTONS AT FASER 1801.08947

Typical simplified approach:

- we focus on only one HNL leaving a signature in FASER
- we vary as free parameters

 m_N , U_{eN} , $U_{\mu N}$, $U_{\tau N}$, where only one $U_{\ell N} \neq 0$ at a time.

B and D meson decays – we consider about ~ 20 production channels, dominant ones dictated by the CKM suppression, kinematics and fragmentation fractions

 $\begin{array}{l} D^{0,\pm} \rightarrow N \ e^{\pm} \ K^{\mp,0,(*)}, \ D_s^{\pm} \rightarrow N \ e^{\pm}, \dots \\ B^{0,\pm} \rightarrow N \ e^{\pm} \ D^{\mp,0,(*)}, \ B^{\pm} \rightarrow N \ e^{\pm}, \\ B^{\pm} \rightarrow N \ e^{\pm}, \dots \end{array}$ Decay modes: $\begin{array}{l} B^{\pm} \rightarrow N \ e^{\pm}, \dots \\ B^{\pm} \rightarrow N \ e^{\pm}, \dots \end{array}$ BR($N \rightarrow 3\nu$) $\sim 10\% - 20\%$ invisible BR($N \rightarrow \nu \ l_1^+ \ l_2^-$) $\sim 20\%$ (BR($N \rightarrow \nu \ e^+ \ e^-$) \sim few percent) BR($N \rightarrow hadrons$) $\sim 60\% - 70\%$, various final states

FASER 2

 \Rightarrow up to $\sim 10^3$ events for $m_N \gtrsim m_D$ \Rightarrow for $m_N \lesssim m_D$ possible $\sim 10^1$ - 10^2 events

POSSIBLE LOCATIONS (TI12 vs TI18)

- When designing the detector 2 main possible locations were considered: tunnels TI12 and TI18 on two sides of the ATLAS IP (~480m away from the IP)
- Both are former service tunnels connecting SPS and the main LHC tunnel
- Both are currently unused
- Both slope steeply upwards when leaving the main LHC tunnel (SPS is shallower than LHC)
- In both cases the line-of-sight (along the beam collision axis) is below the tunnel floor as it enters the tunnel, and then emerges from the floor
- Lowering of the floor up to 460mm is possible to maximize the detector length

(CERN survey team)

- The tunnels do have identical geometry: about 5m long detector can be fit in tunnel TI12 about 3m long detector can be fit in tunnel TI18
- Based on this the preferred location is the tunnel TI12
- BG measurements have been performed in both locations (below fluxes within 10 mrad)

	beam	observed tracks	efficiency	normalized flux, all	normalized flux, main peak
	$[\mathrm{fb}^{-1}]$	$[\mathrm{cm}^{-2}]$		$[fb cm^{-2}]$	$[fb cm^{-2}]$
	2.86		0.25	$(2.6 \pm 0.7) \times 10^4$	$(1.2 \pm 0.4) \times 10^4$
TI12	7.07	174208	0.80	$(3.0 \pm 0.3) \times 10^4$	$(1.9 \pm 0.2) \times 10^4$
FLUKA simulation, E>100 GeV				1×10^{4}	

See talk: J. Boyd at the LHCC Open Session 28/11/2018

- The FASER magnets are 0.6T permanent dipole magnets based on the Halbach array design $$_{x=0mm, y=0mm}$$

 Thin enough to allow the LOS to pass through the magnet center with minimum digging to the floor in TI12

- Minimized needed services (power, cooling etc..)
- To be constructed by the CERN magnet group

- Cost 450kCHF

FASER

FASER TRACKER

- The FASER Tracker will be made up of 3 tracking stations
- Each containing 3 layers of double sided silicon micro-strip detectors
 - Spare ATLAS SCT modules will be used
 - 80µm strip pitch, 40mrad stereo angle
 - Many thanks to the ATLAS SCT collaboration!
- 8 SCT modules give a 24cm x 24cm tracking layer
- 9 layers (3/station, 3 stations) => 72 SCT modules needed for the full tracker
 - 10⁵ channels in total
- Due to the low radiation in TI12 the silicon can be operated at room temperature, but the detector needs be cooled to remove heat from the on-detector ASICs
- Tracker readout using FPGA based board from University of Geneva (already used in Baby MIND neutrino experiment)

SCT module

Tracking layer

Tracking station ³¹

CALORIMETER / SCINTILLATORS

- FASER will have an ECAL for:
 - measuring the EM energy in the event
 - electron/photon identification
 - triggering
- Will use 4 spare LHCb outer ECAL modules
 - Many thanks to LHCb for allowing us to use these!
 - 66 layers of lead/scintillator, light out by wavelength shifting fibres, and readout by PMT (no longitudinal shower information)
 - 25 radiation lengths long
 - dimensions: 12cmx12cm 75cm long (including PMT)
 - Provides ~1% energy resolution for 1 TeV electrons
 - Resolution will degrade at higher energy due to not containing full shower in calorimeter
- Scintillators used for vetoing charged particles entering the decay volume, and for triggering
 - To be produced at CERN scintillator lab
 - Require extremely efficient charged particle veto (eff>99.99%) achievable with the current design

MORE ABOUT TRACK SEPARATION

33

FASER AND SURROUNDING LHC INFRASTRUCTURE

FASER