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“I'm a big pan of double higgs boson search, but my experience
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What do we know about Higgs boson?

e Consistent with JCP — ("

* Couplings to top, gauge bosons at 10-20% level
* Couplings to bottom, tau observed
* No evidence for coupling to Ist, 2nd generations

* Higgs-self coupling?
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hh in Standar

Higgs potential Reparameterization to > R
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» BSM contribution can modify the Higgs boson coupling
parameters and enhance the HH cross section
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Di-Higgs non-resonant with BSM contribution

Extend the SM Lagrangian with dimension 4 and 6 operators in the
framework of the EFT:

ggF HH production can be generally described by 5 parameters
controlling the tree-level interactions of the Higgs boson:
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Diagrams (a) and (b) correspond to SM-like processes; (c), (d), and (e)

I to pure BSM effects _



Di-Higgs resonant production

» Looking for a narrow resonance
X with a mass my using the
Invariant mass spectrum myy,.

» One extra constraint w.r.t non-
resonant

» Well-motivated signatures
according to several scenarios:

» Randall-Sundrum warped extra /W /2
dimension =» spin-0 radion or spin- b/ W/ /2
2 KK graviton

» Cross section is significantly
enhanced on resonances (up to

Pp)




hh->4b resonant (Resolved Jet)

* The search covers low and medium mass regions == .
» Trigger the events using 4 jets (at least 3 should be b-tagged) , =g “
* Background estimation from sidebands of Higgs candidate masses
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hh->4b resonant (fully- and semi-merged)

35.9 b (13 TeV)
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hh->4b non-resonant (resolved)
« Analysis optimized to be sensitive to the SM gg->hh->4b process

* Main background: QCD multijets. Reduced requiring 4 b jets and a BDT classifier
* Limits set on different shape benchmarks: SM, 12 BSM benchmarks
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hh->bb tautau [non-resonant]

Three different final states: bbtautau, bbmutau, bbetau

The search also includes the cases where two b-jets are merged as a fat-jet as well

Using m_2T as the observable

The observed (expected) upper limit about 30 (25) times the prediction of the SM
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hh->bbllvv

Event categories: e+e-, mu-+mu-, emu(OS) from Z(11)Z(nunu), W(lnu)W(Inu)

Exclude di-lepton events in case the mass is compatible with Z boson

Neural network training used to improve signal-background sparation

Upper limit on signal strength: obs(exp) = 79(89)XSM

Large ttbar background limits the exclusion power at low masses
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Resonant mass:

hh->bbgamgam

Small BR(0.26%) but clean signature
2 photons + 2 b-tagged jets (2 photons trigger used)

My = M(jjyy) — M(jj) — M(yy)+250
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Categorization based on the MVA output and Mx mass

Signal is searched for using a parametric fit to M(jj) and M(gamgam)

CMS 35.9 fb' (13 TeV)
T L Iaz

...... Grav. m, = 300 GeV [l ttH(yy) + Data
...... Rad. m, = 600 GeV [l VH(yy) ]
—— gg - HH (x10%) ggH(yy) E
—— VBF HH (x10°) ]
E

0 0.5 1 -
Classification MVA

12



hh->bbgamgam

* Limits computed on the xs of bulk gravitons and radions in the warped
extradimensional models

 Limit on SM xs of gg->hh->bbgamgam: obs (exp) 2 (1.6) fb
* Corresponds to 24 (19) obs (exp) times to SM expectations
* Including VBF hh production improves sensitivity by 1.3%

e Constraint on k_lambda between -11 and 17
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95% CL limit on o(pp—>HH) [fb]

Combination of non-resonant

« Combined obs(exp) limit ~11(13) X SM

* Limits set on 12 BSM shape benchmarks, SM, and

k_lambda=0

* Limit on k lambda for k_t =1:

* Observed: -11.8 ~ 18.8
» Expected: -7.1 ~ 13.6
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* Sensitivity to benchmarks with higher m_hh improved by

including boosted topologies
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Combination of resonant

CMS Preliminary
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New search channels

« We have also started to explore new
channels. [Less sensitive 2 More

challenging]
* hh->bbZZ (in 3 channels)

* bbllnunu
e bbllll
* bbllqq

 Apart from kinematical distributions, some
angular distributions are fed into the BDT

e hh = tautautautau

* Clean signatures with either 1, 2 or 3 leptons
* Dedicated effort to reconstruct ditau mass,

consequently 4 tau system

« Non-negligible contribution from WWtautau

and WWWW

SangEun Lee
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« CMS has conducted extensive searches for diHiggs production for all sensitive
channels, in large mass ranges and for both resonant and non-resonant modes

* All results consistent with SM backgrounds so far
» Combined observed (expected) limit ~22 (13) X SM
* New search channels are being investigated

« We are now switching toward processing rest of run2 data (the next goal is run2
legacy analyses)
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CMS Results (2016 data)

Report on bbbb, bbrr, bbWW, bbtautau

CMS . 359 fo (13 TeV) CMS preliminary 35.9 fb' (13 TeV)
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ATLAS (2016)
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Recent Results
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New signatures
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hh at future colliders

* Need high energy to access HH
| e — * ILC only from second stage @ 500 GeV

* Bbbb as the golden channel

 Sigma Ramda ~27% @ ILC 500 GeV, 4/ab

T « Sioma Ramda ~13% @ CLIC, 1.4 TeV, 2.5/ab + 3 TeV,
10" 5 ab

(e'e — HX) [lb]‘
3 C3

Y

 HH: excellent case for HL-LHC
* Important goal for the YR5

« FC—hh: sigma(100 TeV) = 30 x sigma(14TeV)
 Sigma Ramda ~27% @ ILC 500 GeV, 4/ab

 Sigma Ramda ~13% @ CLIC, 1.4 TeV, 2.5/ab + 3
TeV, 5/ab







The WED models have an extra spatial dimension compactified between two branes, with the
region between (called the bulk) warped via an exponential metric «/, k¥ being the warp factor
and | the coordinate of the extra spatial dimension [12]. The reduced Planck scale (Mp; =
Mp, /87, Mp) being the Planck scale) is considered a fundamental scale. The free parameters
of the model are x/Mp; and the ultraviolet cutoff of the theory Ar = V6e “Mp [6]. In PP
collisions at the LHC, the graviton and the radion are produced primarily through gluon-gluon
fusion and are predicted to decay to HH [13].

SangEun Lee
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Heavy resonances that decay to HH, VV, or VH, where H denotes the Higgs boson, and V de-
notes a W or Z boson, are motivated by theories beyond the standard model (SM) that address
the large difference between the electroweak and gravitational scales. These heavy particles
arise as Kaluza—Klein (KK) excitations of spin-0 radions [1-3], and as spin-2 gravitons pre-
dicted in models based on Randall-Sundrum warped extra dimensions [4, 5], with the gravi-
tons propagating in the entire five-dimensional bulk [6-8]. Heavy spin-1 W’ and Z’ particles
that decay to VV and VH are also postulated in composite Higgs models [9-12], little Higgs
models [13, 14], and in the sequential SM (SSM) [15]. The models containing new spin-1 states
are generalized in the heavy vector triplet (HVT) framework [16]. All of the new hypothetical
particles with spins of 0, 1, or 2 can be produced at the CERN LHC, via the processes depicted
in the Feynman diagrams of Fig. 1.

g H
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The bulk graviton model has two free parameters: the mass of the first KK excitation of the
spin-2 boson, denoted as the KK bulk graviton, and the ratio k = k/ Mpy;, where k is the un-
known curvature scale of the extra dimension and Mp; = Mp;/ /87 is the reduced Planck
mass. Searches for radions in this model can be described in terms of the radion mass and
the ultraviolet cutoff of the theory Ar [17]. The HVT model is formulated in terms of four
parameters: the mass of the new vector bosons, their coupling coefficient to fermions cf, their
coupling coefficient to the Higgs boson and longitudinally-polarized SM vector bosons cy, and
the strength of the new vector boson interaction gy. In the HVT framework two scenarios are

SangEun Lee
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Models with a warped extra dimension (WED), as proposed by Randall and Sundrum [7], are
among those BSM scenarios that predict the existence of resonances with large couplings to
the SM Higgs boson, such as the spin-0 radion [9-11] and the spin-2 first Kaluza—Klein (KK)
excitation of the graviton [12-14]. The WED models postulate an additional spatial dimension
| compactified between two four-dimensional hypersurfaces known as the branes, with the
region between, the bulk, warped by an exponential metric x/, where « is the warp factor [15].
A value of xl~35 fixes the mass hierarchy between the Planck scale Mp; and the electroweak
scale [7]. One of the parameters of the model is x / Mp;, where Mp; = Mp;/ V/87. The ultraviolet
cutoff scale of the model Agr = v/6e " Mp [9] is another parameter, and is expected to be near
the TeV scale.

SangEun Lee
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SangEun Lee

In the absence of new resonances coupling to the Higgs boson, the gluon fusion Higgs boson
pair production subprocess can still be enhanced by BSM contributions to the coupling pa-
rameters of the Higgs boson and the SM fields [16]. The SM production rate of HH through
gluon fusion is determined by the Yukawa coupling of the Higgs boson to the top quark y™
and the Higgs boson self-coupling APM = m? /20%. Here, my = 125GeV is the Higgs boson
mass [17, 18] and v = 246 GeV is the vacuum expectation value of the Higgs field. Deviations
from the SM values of these two coupling parameters can be expressed as xy, = Agp/APN:
and x; = yi/yM, respectively. Depending on the BSM scenario, other couplings not present in
the SM may also exist and can be described by dimension-6 operators in the framework of an
effective field theory by the Lagrangian [19]:

1 1 _
Ly =§a}, Ho'H — EmﬁH2 — k) AP o H3 — %(v + e H+ %HH) (tLtr + h.c.)

1 Xs ng v

+ 1370 (cgH 7o HH) G"' G,y .

The anomalous couplings and the corresponding parameters in this Lagrangian are: the contact

interaction between a pair of Higgs bosons and a pair of top quarks (c2), the interaction between

the Higgs boson and the gluon (cy), and the interaction between a pair of Higgs bosons and a

pair of gluons (c2g). The couplings with CP-violation and the interactions of the Higgs boson

with light SM and BSM particles are not considered. The Lagrangian models the effects of

BSM scenarios with a scale that is beyond the direct LHC reach. This five-parameter space of

BSM Higgs couplings has constraints from measurements of single Higgs boson production
and other theoretical considerations [20, 21].




published by the CMS Collaboration [36], in which two large-area jets are used to reconstruct
the highly Lorentz-boosted Higgs bosons (“fully-merged” event topology). A similar search,
focusing on a lower range of my, was also performed by CMS [37], using events with four
separate b quark jets. The configuration of a Higgs boson candidate as one large-area jet or as
two separate smaller jets is dependent on the momentum of the Higgs boson [38].

In this paper, we improve upon the CMS search for high mass resonance (750 < myx < 3000 GeV)
decaying to HH — bbbb [36] by using “semi-resolved” events, i.e. those containing exactly one
highly Lorentz-boosted Higgs boson while the other Higgs boson is required to have a lower
boost. The more boosted Higgs boson is reconstructed using a large-area jet and the other is re-
constructed from two separate b quark jets. The inclusion of the semi-resolved events leads to
a significant improvement in the search sensitivity for resonances with 750 < myx < 2000 GeV.
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radions decaying to boosted W and Z bosons [74]. The “ N-subjettiness” algorithm [75] is used
on the AK8-PUPPI jet constituents, to compute the variables 7\, which quantify the degree to
which a jet contains N subjets. A selection on the ratio 7)1 = /7 < 0.55 is required for all
AKS jets to be H tagged, which has a jet pr-dependent efficiency of 50%—-70%. The selection
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